找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[复制链接]
楼主: 租期
发表于 2025-3-23 12:40:34 | 显示全部楼层
Candace S. Bos,Virginia Richardsonthis situation, . need not be a principal ideal domain and . need not be a free .-module. We shall introduce the relative trace and norm of fractional ideals of . and, in view of characterizing ramified prime ideals, we shall consider the relative discriminant and relative different.
发表于 2025-3-23 14:41:09 | 显示全部楼层
Research Issues in Learning Disabilitiese a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
发表于 2025-3-23 20:07:02 | 显示全部楼层
https://doi.org/10.1007/978-0-387-21690-4algebra; algebraic geometry; automorphism; cryptography; diophantine equation; field; prime number; quadrat
发表于 2025-3-24 01:08:22 | 显示全部楼层
发表于 2025-3-24 04:41:46 | 显示全部楼层
Extension of Idealsrespectively, .), be the rings of algebraic integers of . (respectively, .). Let . be any nonzero fractional ideal of .. The aim of this study is to relate the decomposition of . into prime ideals of ., with the decomposition into prime ideals of ., of the fractional ideal of . generated by ..
发表于 2025-3-24 10:00:14 | 显示全部楼层
发表于 2025-3-24 12:56:00 | 显示全部楼层
The Decomposition of Prime Ideals in Galois Extensionse a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
发表于 2025-3-24 15:25:58 | 显示全部楼层
Universitexthttp://image.papertrans.cn/c/image/227139.jpg
发表于 2025-3-24 21:21:42 | 显示全部楼层
Navigating Sensitive Topics with Children,Let A be a domain, that is, a commutative ring with unit element (different from 0), having no zero-divisors (except 0). Let . be its field of quotients.
发表于 2025-3-25 02:54:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 12:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表