找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 20072nd edition Birkhäuser Basel 2007 Classical geometry.Fin

[复制链接]
查看: 14019|回复: 35
发表于 2025-3-21 18:18:14 | 显示全部楼层 |阅读模式
书目名称Classical Geometries in Modern Contexts
副标题Geometry of Real Inn
编辑Walter Benz
视频video
概述Dimension-free presentation.Inclusion of proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses.Common presentation for finite and infinite dimensional re
图书封面Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 20072nd edition Birkhäuser Basel 2007 Classical geometry.Fin
描述.This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. ..Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry..
出版日期Book 20072nd edition
关键词Classical geometry; Finite; Hyperbolic geometry; Inner product space; Lie; Lorentz transformation; Natural
版次2
doihttps://doi.org/10.1007/978-3-7643-8541-5
isbn_ebook978-3-7643-8541-5
copyrightBirkhäuser Basel 2007
The information of publication is updating

书目名称Classical Geometries in Modern Contexts影响因子(影响力)




书目名称Classical Geometries in Modern Contexts影响因子(影响力)学科排名




书目名称Classical Geometries in Modern Contexts网络公开度




书目名称Classical Geometries in Modern Contexts网络公开度学科排名




书目名称Classical Geometries in Modern Contexts被引频次




书目名称Classical Geometries in Modern Contexts被引频次学科排名




书目名称Classical Geometries in Modern Contexts年度引用




书目名称Classical Geometries in Modern Contexts年度引用学科排名




书目名称Classical Geometries in Modern Contexts读者反馈




书目名称Classical Geometries in Modern Contexts读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:45:39 | 显示全部楼层
发表于 2025-3-22 01:15:35 | 显示全部楼层
Book 20072nd edition(general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. Th
发表于 2025-3-22 08:30:02 | 显示全部楼层
发表于 2025-3-22 11:53:03 | 显示全部楼层
发表于 2025-3-22 15:16:58 | 显示全部楼层
发表于 2025-3-22 21:07:33 | 显示全部楼层
Translation Groups,hers we shall use later on, see the section . of this book. Instead of . (.) we will write . or, occasionally, .. The laws above are then the following: . for all . ∈ ., λ ∈ ℝ, and .:= . > 0 for all . ∈ .{0}. Instead of (.) we mostly will speak of ., hence tacitly assuming that . is equipped with a
发表于 2025-3-23 00:51:04 | 显示全部楼层
-Projective Mappings, Isomorphism Theorems, we do not exclude the case that there exist infinite linearly independent subsets of . or .. One of the important results of this chapter is that the hyperbolic geometries (.(.)), (.(.)) over . = (.), . = (.), respectively, . the group of hyperbolic motions, are isomorphic (see p. 16f) if, and only
发表于 2025-3-23 05:05:13 | 显示全部楼层
发表于 2025-3-23 08:47:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 03:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表