找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chaotic Transport in Dynamical Systems; Stephen Wiggins Book 1992 Springer-Verlag New York 1992 dynamical systems.dynamics.fluid mechanics

[复制链接]
查看: 53389|回复: 36
发表于 2025-3-21 17:22:43 | 显示全部楼层 |阅读模式
书目名称Chaotic Transport in Dynamical Systems
编辑Stephen Wiggins
视频videohttp://file.papertrans.cn/224/223933/223933.mp4
丛书名称Interdisciplinary Applied Mathematics
图书封面Titlebook: Chaotic Transport in Dynamical Systems;  Stephen Wiggins Book 1992 Springer-Verlag New York 1992 dynamical systems.dynamics.fluid mechanics
描述Provides a new and more realistic framework for describing the dynamics of non-linear systems. A number of issues arising in applied dynamical systems from the viewpoint of problems of phase space transport are raised in this monograph. Illustrating phase space transport problems arising in a variety of applications that can be modeled as time-periodic perturbations of planar Hamiltonian systems, the book begins with the study of transport in the associated two-dimensional Poincaré Map. This serves as a starting point for the further motivation of the transport issues through the development of ideas in a non-perturbative framework with generalizations to higher dimensions as well as more general time dependence. A timely and important contribution to those concerned with the applications of mathematics.
出版日期Book 1992
关键词dynamical systems; dynamics; fluid mechanics; hamiltonian system; mechanics
版次1
doihttps://doi.org/10.1007/978-1-4757-3896-4
isbn_softcover978-1-4419-3096-5
isbn_ebook978-1-4757-3896-4Series ISSN 0939-6047 Series E-ISSN 2196-9973
issn_series 0939-6047
copyrightSpringer-Verlag New York 1992
The information of publication is updating

书目名称Chaotic Transport in Dynamical Systems影响因子(影响力)




书目名称Chaotic Transport in Dynamical Systems影响因子(影响力)学科排名




书目名称Chaotic Transport in Dynamical Systems网络公开度




书目名称Chaotic Transport in Dynamical Systems网络公开度学科排名




书目名称Chaotic Transport in Dynamical Systems被引频次




书目名称Chaotic Transport in Dynamical Systems被引频次学科排名




书目名称Chaotic Transport in Dynamical Systems年度引用




书目名称Chaotic Transport in Dynamical Systems年度引用学科排名




书目名称Chaotic Transport in Dynamical Systems读者反馈




书目名称Chaotic Transport in Dynamical Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:14:32 | 显示全部楼层
Introduction and Examples,e, it is important from the point of view of applications to have a framework for studying these issues. In this monograph we want to motivate many of these issues from the viewpoint of problems of ..
发表于 2025-3-22 01:39:37 | 显示全部楼层
Transport in Quasiperiodically Forced Systems: Dynamics Generated by Sequences of Maps,ely defined shortly). In generalizing the time dependence of the vector fields from the periodic case many new difficulties arise, both conceptual and technical. We now want to examine these difficulties in the context of a general discussion of the construction of discrete time maps from the trajectories of time-dependent vector fields.
发表于 2025-3-22 04:55:07 | 显示全部楼层
https://doi.org/10.1007/978-981-10-2561-7Over the past ten years much enthusiasm has arisen over the application of the methods of dynamical systems to problems concerned with mixing and transport in fluids; for a recent survey, see Ottino [1989]. The general setting for these problems is as follows.
发表于 2025-3-22 10:17:03 | 显示全部楼层
发表于 2025-3-22 14:51:34 | 显示全部楼层
发表于 2025-3-22 18:10:19 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-3896-4dynamical systems; dynamics; fluid mechanics; hamiltonian system; mechanics
发表于 2025-3-23 01:07:32 | 显示全部楼层
978-1-4419-3096-5Springer-Verlag New York 1992
发表于 2025-3-23 05:02:32 | 显示全部楼层
https://doi.org/10.1007/978-981-10-2561-7tors of a system. Justification is often given for this by noting that since attractors capture the asymptotic behavior of a system their study will shed light on the . motions of the system. This is certainly true; however, many important . dynamical phenomena are not asymptotic in nature, but rath
发表于 2025-3-23 07:09:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 12:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表