书目名称 | Chaotic Dynamics in Nonlinear Theory | 编辑 | Lakshmi Burra | 视频video | | 概述 | Presents a novel method to prove the existence of chaotic dynamics.Discusses the methods of phase-plane analysis, results from the theory of topological horseshoes and linked-twist maps.Proves the pre | 图书封面 |  | 描述 | .Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved.. | 出版日期 | Book 2014 | 关键词 | Chaotic dynamics; Linked twist mappings; Nonlinear dynamics; Nonlinear second-order ODEs; Periodic solut | 版次 | 1 | doi | https://doi.org/10.1007/978-81-322-2092-3 | isbn_softcover | 978-81-322-3543-9 | isbn_ebook | 978-81-322-2092-3 | copyright | Springer India 2014 |
The information of publication is updating
|
|