找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chaotic Dynamics in Nonlinear Theory; Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic

[复制链接]
查看: 42097|回复: 35
发表于 2025-3-21 18:28:56 | 显示全部楼层 |阅读模式
书目名称Chaotic Dynamics in Nonlinear Theory
编辑Lakshmi Burra
视频video
概述Presents a novel method to prove the existence of chaotic dynamics.Discusses the methods of phase-plane analysis, results from the theory of topological horseshoes and linked-twist maps.Proves the pre
图书封面Titlebook: Chaotic Dynamics in Nonlinear Theory;  Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic
描述.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved..
出版日期Book 2014
关键词Chaotic dynamics; Linked twist mappings; Nonlinear dynamics; Nonlinear second-order ODEs; Periodic solut
版次1
doihttps://doi.org/10.1007/978-81-322-2092-3
isbn_softcover978-81-322-3543-9
isbn_ebook978-81-322-2092-3
copyrightSpringer India 2014
The information of publication is updating

书目名称Chaotic Dynamics in Nonlinear Theory影响因子(影响力)




书目名称Chaotic Dynamics in Nonlinear Theory影响因子(影响力)学科排名




书目名称Chaotic Dynamics in Nonlinear Theory网络公开度




书目名称Chaotic Dynamics in Nonlinear Theory网络公开度学科排名




书目名称Chaotic Dynamics in Nonlinear Theory被引频次




书目名称Chaotic Dynamics in Nonlinear Theory被引频次学科排名




书目名称Chaotic Dynamics in Nonlinear Theory年度引用




书目名称Chaotic Dynamics in Nonlinear Theory年度引用学科排名




书目名称Chaotic Dynamics in Nonlinear Theory读者反馈




书目名称Chaotic Dynamics in Nonlinear Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:08:46 | 显示全部楼层
发表于 2025-3-22 03:22:38 | 显示全部楼层
13.7 Health, safety and ecology,respect to oriented cells. For these maps, we prove some theorems on the existence of fixed points, periodic points, and sequences of iterates, which are chaotic in a suitable manner. Our results, motivated by the study of the Poincaré map associated to some nonlinear equations, extend and improve some recent work.
发表于 2025-3-22 05:34:24 | 显示全部楼层
发表于 2025-3-22 10:58:42 | 显示全部楼层
topological horseshoes and linked-twist maps.Proves the pre.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indi
发表于 2025-3-22 13:42:10 | 显示全部楼层
13.4 Properties of hardmetals and cermets,iology, medicine, engineering, and economics. The fact that a perfectly deterministic system can behave in an apparently unpredictable way was of interest far beyond dynamical systems. In this chapter, some concepts relevant to chaotic dynamics are introduced.
发表于 2025-3-22 18:55:13 | 显示全部楼层
发表于 2025-3-22 21:38:35 | 显示全部楼层
发表于 2025-3-23 04:15:42 | 显示全部楼层
发表于 2025-3-23 07:54:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 22:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表