找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[复制链接]
查看: 30787|回复: 59
发表于 2025-3-21 19:16:31 | 显示全部楼层 |阅读模式
书目名称Cardinal Functions on Boolean Algebras
编辑J. Donald Monk
视频video
丛书名称Lectures in Mathematics. ETH Zürich
图书封面Titlebook: Cardinal Functions on Boolean Algebras;  J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function
出版日期Book 1990
关键词algebra; Boolean algebra; cardinal function; function; functions
版次1
doihttps://doi.org/10.1007/978-3-0348-6381-0
isbn_softcover978-3-7643-2495-7
isbn_ebook978-3-0348-6381-0
copyrightSpringer Basel AG 1990
The information of publication is updating

书目名称Cardinal Functions on Boolean Algebras影响因子(影响力)




书目名称Cardinal Functions on Boolean Algebras影响因子(影响力)学科排名




书目名称Cardinal Functions on Boolean Algebras网络公开度




书目名称Cardinal Functions on Boolean Algebras网络公开度学科排名




书目名称Cardinal Functions on Boolean Algebras被引频次




书目名称Cardinal Functions on Boolean Algebras被引频次学科排名




书目名称Cardinal Functions on Boolean Algebras年度引用




书目名称Cardinal Functions on Boolean Algebras年度引用学科排名




书目名称Cardinal Functions on Boolean Algebras读者反馈




书目名称Cardinal Functions on Boolean Algebras读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:09:07 | 显示全部楼层
发表于 2025-3-22 01:22:36 | 显示全部楼层
Cardinality,.. = 2. for A satisfying CSP. W. Just [88] has shown that it is consistent to have a BA . such that ω. ≤ Card.. = |.| < 2ω. Questions about Card. are connected to some problems about cofinality and related cardinal functions which will not be considered here; see van Douwen [89]. The cardinal function Card. is defined as follows:
发表于 2025-3-22 05:46:15 | 显示全部楼层
Character,. ∈ . and ... = 0 for . ∉ .. Then . is the set of all.such that .. ≤ . for some cofinite subset . of .. So, it is clear that . ≤ .|. If . is a set of generators for . with |.| < |.|, then there is a . ∈ . such that . ⊆ .. for infinitely many cofinite subsets . of .; this is clearly impossible.
发表于 2025-3-22 10:20:51 | 显示全部楼层
发表于 2025-3-22 15:08:58 | 显示全部楼层
发表于 2025-3-22 17:35:17 | 显示全部楼层
https://doi.org/10.1007/978-981-99-7879-3of . such that . ⊆ .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
发表于 2025-3-22 23:15:27 | 显示全部楼层
,-Weight, . with π . < π ., and if we take . = . and . = ./Fin, then π . = ω; while π . = 2. since A has a disjoint subset of size 2.. Turning to products, we have (math) for any system (.. : . ∈ .) of infinite BA’s. For, ≥ is clear; now suppose .. is a dense subset of .. for each . ∈ ..
发表于 2025-3-23 03:51:30 | 显示全部楼层
发表于 2025-3-23 07:29:28 | 显示全部楼层
Tightness,of . such that . ⊆ .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 06:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表