找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Business Information Systems; 23rd International C Witold Abramowicz,Gary Klein Conference proceedings 2020 Springer Nature Switzerland AG

[复制链接]
楼主: 欺侮
发表于 2025-3-28 18:10:37 | 显示全部楼层
https://doi.org/10.1007/978-3-030-53337-3IoT; artificial intelligence; big data; business process management; chatbots; data analytics; data scienc
发表于 2025-3-28 21:14:46 | 显示全部楼层
发表于 2025-3-29 02:02:41 | 显示全部楼层
Business Information Systems978-3-030-53337-3Series ISSN 1865-1348 Series E-ISSN 1865-1356
发表于 2025-3-29 04:37:14 | 显示全部楼层
发表于 2025-3-29 09:56:38 | 显示全部楼层
发表于 2025-3-29 12:26:34 | 显示全部楼层
发表于 2025-3-29 18:45:00 | 显示全部楼层
https://doi.org/10.1007/978-3-658-37350-4suitable early Parkinson Patterns, the investigation of this phenomenon is highly relevant. The analysis of sleep is currently done by manual analysis of polysomnography (PSG), which leads to divergent scoring results by different experts. Automated sleep stage detection can help deliver accurate, r
发表于 2025-3-29 23:25:14 | 显示全部楼层
https://doi.org/10.1007/978-3-642-46247-4 One of the most crucial steps in the planning of a system includes the modeling of the underlying architecture. However, as of now, no standardized approach exists that facilitates the modeling of big data system architectures (BDSA). In this research, a systematic approach is presented that delive
发表于 2025-3-30 01:12:19 | 显示全部楼层
https://doi.org/10.1007/978-3-642-46247-4cal analysis. However, especially when working with massive amounts of data, spreadsheet applications have their limitations. To cope with this issue, we introduce a human-in-the-loop approach for scalable data preprocessing using sampling. In contrast to state-of-the-art approaches, we also conside
发表于 2025-3-30 05:08:11 | 显示全部楼层
https://doi.org/10.1007/978-3-663-05365-1ance between event data and normative models, and enhancing all aspects of processes. Recently, new techniques have been developed to analyze event data containing uncertainty; these techniques strongly rely on representing uncertain event data through graph-based models capturing uncertainty. In th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 20:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表