找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Brain Informatics; International Confer Yi Zeng,Yong He,Qingming Luo Conference proceedings 2017 Springer International Publishing AG 2017

[复制链接]
查看: 26257|回复: 54
发表于 2025-3-21 16:37:36 | 显示全部楼层 |阅读模式
期刊全称Brain Informatics
期刊简称International Confer
影响因子2023Yi Zeng,Yong He,Qingming Luo
视频video
发行地址Includes supplementary material:
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Brain Informatics; International Confer Yi Zeng,Yong He,Qingming Luo Conference proceedings 2017 Springer International Publishing AG 2017
影响因子This book constitutes the refereed proceedings of the InternationalConference on Brain Informatics, BI 2017, held in Beijing, China, inNovember 2017.The 31 revised full paperswere carefully reviewed and selected from 64 submissions. BI addresses the computational, cognitive, physiological, biological, physical,ecological and social perspectives of brain informatics, as well as topics related to.mental health and well-being..
Pindex Conference proceedings 2017
The information of publication is updating

书目名称Brain Informatics影响因子(影响力)




书目名称Brain Informatics影响因子(影响力)学科排名




书目名称Brain Informatics网络公开度




书目名称Brain Informatics网络公开度学科排名




书目名称Brain Informatics被引频次




书目名称Brain Informatics被引频次学科排名




书目名称Brain Informatics年度引用




书目名称Brain Informatics年度引用学科排名




书目名称Brain Informatics读者反馈




书目名称Brain Informatics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:54:16 | 显示全部楼层
发表于 2025-3-22 01:36:43 | 显示全部楼层
发表于 2025-3-22 07:55:29 | 显示全部楼层
发表于 2025-3-22 08:50:09 | 显示全部楼层
Operating the System, Version 2,g and expression of affective pattern, and then improve the accuracy of recognition. The accuracy of the proposed multi-layer EEG-ER system is compared with various feature extraction methods. For analysis results, average and maximum classification rates of 64% and 67.0% were obtained for arousal and 66.6% and 76.0% for valence.
发表于 2025-3-22 15:55:47 | 显示全部楼层
Learning Music Emotions via Quantum Convolutional Neural Networkms as well as the state-of-the-art in the task of music emotion classification. Moreover, we provide demonstration experiment to explain the good performance of the proposed technique from the perspective of physics and psychology.
发表于 2025-3-22 20:49:09 | 显示全部楼层
EEG-Based Emotion Recognition via Fast and Robust Feature Smoothingesults on the well-known DEAP dataset demonstrate the effectiveness of our approach. Comparing to other studies on the same dataset, ours achieves the shortest feature processing time and the highest classification accuracy on emotion recognition in the valence-arousal quadrant space.
发表于 2025-3-22 22:25:05 | 显示全部楼层
发表于 2025-3-23 01:55:19 | 显示全部楼层
发表于 2025-3-23 06:33:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 01:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表