找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Birational Geometry, Kähler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc

[复制链接]
楼主: 烈酒
发表于 2025-3-28 14:46:56 | 显示全部楼层
https://doi.org/10.1007/978-3-8348-9692-6It was proved by  Chen and Chen that a terminal Fano 3-fold . satisfies .. We show that a non-rational .-factorial terminal Fano 3-fold . with . and . is a weighted hypersurface of degree 66 in ..
发表于 2025-3-28 22:24:49 | 显示全部楼层
发表于 2025-3-29 02:44:16 | 显示全部楼层
Classification of Exceptional Complements: Elliptic Curve Case,We classify the log del Pezzo surface (., .) of rank 1 with no 1-,2-,3-,4-, or 6-complements with the additional condition that . has one irreducible component . which is an elliptic curve and . has the coefficient . in . with . for ., 2, 3, 4, and 6.
发表于 2025-3-29 06:35:38 | 显示全部楼层
发表于 2025-3-29 10:25:01 | 显示全部楼层
发表于 2025-3-29 14:39:26 | 显示全部楼层
发表于 2025-3-29 18:12:06 | 显示全部楼层
K-Polystability of Two Smooth Fano Threefolds,We give new proofs of the K-polystability of two smooth Fano threefolds. One of them is a smooth divisor in . of degree (1, 1, 1), which is unique up to isomorphism. Another one is the blow up of the complete intersection . in the conic cut out by ., where . is a primitive cube root of unity.
发表于 2025-3-29 22:10:19 | 显示全部楼层
,Existence of Canonical Models for Kawamata Log Terminal Pairs,We prove that a Kawamata log terminal pair has the canonical model.
发表于 2025-3-30 00:46:25 | 显示全部楼层
,Birationally Rigid Complete Intersections of Codimension Three,We prove that the complement to the set of birationally superrigid Fano complete intersections of index 1 and codimension 3 in . is at least . for
发表于 2025-3-30 04:03:57 | 显示全部楼层
,Characterizing Terminal Fano Threefolds with the Smallest Anti-canonical Volume,It was proved by  Chen and Chen that a terminal Fano 3-fold . satisfies .. We show that a non-rational .-factorial terminal Fano 3-fold . with . and . is a weighted hypersurface of degree 66 in ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 11:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表