找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bioinformatics Research and Applications; 15th International S Zhipeng Cai,Pavel Skums,Min Li Conference proceedings 2019 Springer Nature S

[复制链接]
楼主: DEIGN
发表于 2025-3-27 00:39:59 | 显示全部楼层
发表于 2025-3-27 04:18:26 | 显示全部楼层
https://doi.org/10.1007/978-90-313-6360-5 to reveal the dependency relationship between genotypes and phenotypes. Furthermore, a genomic data sanitization method is proposed to protect against optimal inference attacks launched by powerful attackers.
发表于 2025-3-27 05:52:29 | 显示全部楼层
发表于 2025-3-27 12:16:14 | 显示全部楼层
发表于 2025-3-27 13:57:34 | 显示全部楼层
Sorting by Reversals, Transpositions, and Indels on Both Gene Order and Intergenic Sizesom intergenic regions of the genome, respectively. We study problems considering both gene order and intergenic regions size. We investigate the reversal distance between two genomes in two scenarios: with and without non-conservative events. For both problems, we show that they belong to NP-hard pr
发表于 2025-3-27 18:54:09 | 显示全部楼层
发表于 2025-3-28 00:30:15 | 显示全部楼层
发表于 2025-3-28 03:16:40 | 显示全部楼层
Gene- and Pathway-Based Deep Neural Network for Multi-omics Data Integration to Predict Cancer Surviet captures nonlinear effects of multi-omics data to survival outcomes via a neural network framework, while allowing one to biologically interpret the model. In the extensive experiments with multi-omics data of Gliblastoma multiforme (GBM) patients, MiNet outperformed the current cutting-edge meth
发表于 2025-3-28 07:06:24 | 显示全部楼层
发表于 2025-3-28 13:55:41 | 显示全部楼层
Deep Learning and Random Forest-Based Augmentation of sRNA Expression Profiles accuracy for tissue groups is 98% (DL), for tissues - 96.5% (DL), and for sex - 77% (DL). The “one dataset out” average accuracy for tissue group prediction is 83% (DL) and 59% (RF). On average, DL provides better results as compared to RF, and considerably improves classification performance for ‘
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 07:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表