找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid

[复制链接]
楼主: 频率
发表于 2025-3-26 22:56:04 | 显示全部楼层
发表于 2025-3-27 01:54:23 | 显示全部楼层
发表于 2025-3-27 08:00:49 | 显示全部楼层
MARK A. MASLIN,GEORGE E.A. SWANNl optimization problem in the second section. Here, the lower level problem is a multicommodity network flow problem with parametric objective function. An algorithm implementing the filling functions technique is presented. At the end results of a numerical realization of this algorithm are reported.
发表于 2025-3-27 12:52:45 | 显示全部楼层
https://doi.org/10.1007/978-3-030-33652-3ution algorithms for the linear bilevel optimization problem are formulated either using regions of stability for solutions of the lower level problem or the optimal value reformulation of the bilevel problem.
发表于 2025-3-27 16:21:44 | 显示全部楼层
Linear Bilevel Optimization Problem,ution algorithms for the linear bilevel optimization problem are formulated either using regions of stability for solutions of the lower level problem or the optimal value reformulation of the bilevel problem.
发表于 2025-3-27 19:17:37 | 显示全部楼层
Book 2015t describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained..
发表于 2025-3-27 22:51:28 | 显示全部楼层
发表于 2025-3-28 05:12:10 | 显示全部楼层
Cyril Chelle-Michou,Urs Schalteggern problem with one Boolean variable in the lower level problem. We report related models, arising in applications, if the Boolean variable is shifted to the upper level problem or when stochastic data are implemented. Solution algorithms and numerical results are presented.
发表于 2025-3-28 10:09:05 | 显示全部楼层
MARK A. MASLIN,GEORGE E.A. SWANN a parametric Nash equilibrium between two followers is considered in the lower level. The cases of linear and nonlinear bilevel optimization are described in detail. An example is used to illustrate this idea.
发表于 2025-3-28 12:40:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 03:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表