找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bildverarbeitung für die Medizin 2022; Proceedings, German Klaus Maier-Hein,Thomas M. Deserno,Thomas Tolxdorf Conference proceedings 2022

[复制链接]
楼主: risky-drinking
发表于 2025-3-26 22:44:01 | 显示全部楼层
Robust Liver Segmentation with Deep Learning Across DCE-MRI Contrast Phases,nhanced MRI is particularly relevant. Previouswork has focused on liver segmentation in the late hepatobiliary contrast phase, which may not always be available in heterogeneous data from clinical routine. In this contribution, we demonstrate the training of a convolutional neural network across con
发表于 2025-3-27 05:04:36 | 显示全部楼层
发表于 2025-3-27 07:21:57 | 显示全部楼层
发表于 2025-3-27 13:17:05 | 显示全部楼层
Unsupervised Anomaly Detection in the Wild,chniques without the need for explicitly labeled data. However, most previous works study different methods in a constrained research setting with a limited number of common types of pathologies. Here, we want to explore a more realistic setting and target the incidental findings in a large-scale po
发表于 2025-3-27 13:41:47 | 显示全部楼层
发表于 2025-3-27 20:23:50 | 显示全部楼层
发表于 2025-3-27 22:26:47 | 显示全部楼层
Detection of Large Vessel Occlusions Using Deep Learning by Deforming Vessel Tree Segmentations,ment of ischemic strokes, in particular in cases of large vessel occlusions (LVO). Thus, the clinical workflow greatly benefits from an automated detection of patients suffering from LVOs. This work uses convolutional neural networks for case-level classification trained with elastic deformation of
发表于 2025-3-28 02:58:54 | 显示全部楼层
发表于 2025-3-28 09:58:30 | 显示全部楼层
Machine Learning-based Detection of Spherical Markers in CT Volumes,s of the markers is crucial for an accurate alignment. A typical approach utilizes a 3D version of fast radial symmetry transform for marker detection. This method works only for a given set of radii and tends to be influenced by reconstruction artifacts.With a desire for a more robust solution, a d
发表于 2025-3-28 13:32:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 08:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表