找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data Analytics; Second International Vasudha Bhatnagar,Srinath Srinivasa Conference proceedings 2013 Springer International Publishing

[复制链接]
查看: 37301|回复: 49
发表于 2025-3-21 18:47:21 | 显示全部楼层 |阅读模式
期刊全称Big Data Analytics
期刊简称Second International
影响因子2023Vasudha Bhatnagar,Srinath Srinivasa
视频video
发行地址Fast-track conference proceedings.State-of-the-art research.Up to date results
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Big Data Analytics; Second International Vasudha Bhatnagar,Srinath Srinivasa Conference proceedings 2013 Springer International Publishing
影响因子This book constitutes the thoroughly refereed conference proceedings of the Second International Conference on Big Data Analytics, BDA 2013, held in Mysore, India, in December 2013. The 13 revised full papers were carefully reviewed and selected from 49 submissions and cover topics on mining social media data, perspectives on big data analysis, graph analysis, big data in practice.
Pindex Conference proceedings 2013
The information of publication is updating

书目名称Big Data Analytics影响因子(影响力)




书目名称Big Data Analytics影响因子(影响力)学科排名




书目名称Big Data Analytics网络公开度




书目名称Big Data Analytics网络公开度学科排名




书目名称Big Data Analytics被引频次




书目名称Big Data Analytics被引频次学科排名




书目名称Big Data Analytics年度引用




书目名称Big Data Analytics年度引用学科排名




书目名称Big Data Analytics读者反馈




书目名称Big Data Analytics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:25:29 | 显示全部楼层
发表于 2025-3-22 03:46:00 | 显示全部楼层
发表于 2025-3-22 07:19:24 | 显示全部楼层
发表于 2025-3-22 09:43:59 | 显示全部楼层
发表于 2025-3-22 13:56:14 | 显示全部楼层
发表于 2025-3-22 17:04:46 | 显示全部楼层
发表于 2025-3-23 00:49:56 | 显示全部楼层
Challenges and Approaches for Large Graph Analysis Using Map/Reduce Paradigmively parallel ways (e.g., Map/Reduce, Bulk Synchronous Parallelization), as well as the ability to process unstructured data. This has allowed one to solve problems that were not possible (or extremely time consuming) earlier. Many algorithms are being mapped to new paradigms to deal with larger ve
发表于 2025-3-23 02:11:28 | 显示全部楼层
发表于 2025-3-23 07:32:42 | 显示全部楼层
Visualization of Small World Networks Using Similarity Matrices” Generally networks are represented using graph layouts and images of adjacency matrices, which have shortcomings of occlusion and spatial complexity in its direct form. These shortcomings are usually alleviated using pixel displays, hierarchical representations in the graph layout, and sampling an
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 06:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表