找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
楼主: 叶子
发表于 2025-3-25 06:02:55 | 显示全部楼层
Diffus verteiltes interstellares Gas,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
发表于 2025-3-25 10:24:47 | 显示全部楼层
发表于 2025-3-25 13:17:35 | 显示全部楼层
2573-3168 derstand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited
发表于 2025-3-25 17:56:45 | 显示全部楼层
Book 2020he complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum i
发表于 2025-3-25 23:19:02 | 显示全部楼层
Bifurcation Trees,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
发表于 2025-3-26 02:39:39 | 显示全部楼层
Harmonic Frequency-Amplitude Characteristics,od. for non-travelable periodic motions. For the travelable period-m motions, the harmonic analysis of periodic node velocities are presented. Because of . the periodic node displacements cannot be used for the harmonic analysis of the periodic motions.
发表于 2025-3-26 06:58:58 | 显示全部楼层
发表于 2025-3-26 09:28:51 | 显示全部楼层
发表于 2025-3-26 15:28:01 | 显示全部楼层
Introduction,st nonlinear systems. This is because the inherent complex dynamics of the parametrically excited pendulum helps one better understand the complex world. However, until now, complex motions in the parametrical pendulum cannot be achieved yet through the traditional analysis. What are the mechanism a
发表于 2025-3-26 16:52:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 02:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表