找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Tensor Decomposition for Signal Processing and Machine Learning; Modeling, Tuning-Fre Lei Cheng,Zhongtao Chen,Yik-Chung Wu Book 20

[复制链接]
楼主: CROSS
发表于 2025-3-25 03:26:06 | 显示全部楼层
Visual Interactive Process Monitoringjourney in this chapter. For a pedagogical purpose, the first treatment is given on the most fundamental tensor decomposition format, namely CPD, which has been introduced in Chap. .. As will be demonstrated in the following chapters, the key ideas developed for Bayesian CPD can be applied to other
发表于 2025-3-25 08:16:11 | 显示全部楼层
发表于 2025-3-25 15:16:30 | 显示全部楼层
Takafumi Yamashita,Ryosuke Sagaame time. Obviously, this is no longer suitable for large datasets. To enable Bayesian tensor CPD in the Big Data era, the idea of stochastic optimization can be incorporated, rendering a scalable algorithm that only processes a mini-batch data at a time. In this chapter, we develop a scalable algor
发表于 2025-3-25 18:31:55 | 显示全部楼层
Yuichi Bannai,Takayuki Kosaka,Naomi Aiba usually has additional prior structural information for the factor matrices, e.g., nonnegativeness and orthogonality. Encoding this structural information into the probabilistic tensor modeling while still achieving tractable inference remains a critical challenge. In this chapter, we introduce the
发表于 2025-3-25 21:34:52 | 显示全部楼层
发表于 2025-3-26 04:02:22 | 显示全部楼层
Lecture Notes in Computer Sciencee tensors can be observed. This gives rise to the tensor completion problem. In this chapter, we use subspace identification for direction-of-arrival (DOA) estimation as a case study to elucidate the key idea of the associated Bayesian modeling and inference in data completion. In particular, we fir
发表于 2025-3-26 08:10:21 | 显示全部楼层
Lecture Notes in Computer Sciencenformation exists or the data structure is altered. In this chapter, we present tensor rank learning for other tensor decomposition formats. It turns out that what has been presented for CPD is instrumental for other Bayesian tensor modelings, as they share many common characteristics.
发表于 2025-3-26 09:17:24 | 显示全部楼层
发表于 2025-3-26 16:25:07 | 显示全部楼层
https://doi.org/10.1007/978-3-031-22438-6Structured Tensor Decomposition; Tensor Rank; Automatic Rank Determination; Tensor Signal Processing; Ba
发表于 2025-3-26 18:45:17 | 显示全部楼层
978-3-031-22440-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 22:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表