找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Methods for the Physical Sciences; Learning from Exampl Stefano Andreon,Brian Weaver Book 2015 Springer Nature Switzerland AG 2015

[复制链接]
楼主: 解放
发表于 2025-3-27 00:38:58 | 显示全部楼层
发表于 2025-3-27 02:44:48 | 显示全部楼层
Carsten Carlberg,Ferdinand Molnár some specific complexity pointed out by the data? Furthermore, are the data informative about the quantity being measured or are results sensibly dependent on details of the fitted model? And, finally, what about if assumptions are uncertain? A number of examples illustrate how to answer these questions.
发表于 2025-3-27 07:18:24 | 显示全部楼层
发表于 2025-3-27 09:27:50 | 显示全部楼层
发表于 2025-3-27 16:46:15 | 显示全部楼层
Bayesian vs Simple Methods,n terms of quality of the prediction, accuracy of the estimates, and fairness and noisiness of the quoted errors. We also focus on three failures of maximum likelihood methods occurring with small samples, with mixtures, and with regressions with errors in the predictor quantity.
发表于 2025-3-27 21:35:40 | 显示全部楼层
发表于 2025-3-27 22:13:56 | 显示全部楼层
发表于 2025-3-28 03:49:50 | 显示全部楼层
发表于 2025-3-28 10:19:02 | 显示全部楼层
Fitting Regression Models,ip and estimate any unknown parameters that dictate this relationship. Questions of interest include: how to deal with samples affected by selection effects? How does a rich data structure influence the fitted parameters? And what about non-linear multiple-predictor fits, upper/lower limits, measure
发表于 2025-3-28 11:06:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-8 15:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表