找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkhäuser Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[复制链接]
楼主: Grievous
发表于 2025-3-26 23:01:26 | 显示全部楼层
发表于 2025-3-27 04:14:11 | 显示全部楼层
发表于 2025-3-27 06:24:29 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ⊂ ℝ is . with respect to the natural “metric”:
发表于 2025-3-27 09:35:57 | 显示全部楼层
https://doi.org/10.1007/978-3-642-57987-5en chosen, especially when complements of sets (to be defined below) are involved in the discussion. Before defining the basic operations on sets, let us introduce a notation which will be used throughout the book.
发表于 2025-3-27 17:06:56 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-8227-8their . Here, the most important concept is that of a .. It will be used in Appendix A for a brief discussion of Cantor’s construction of real numbers from the Cauchy sequences in the set ℚ of rational numbers. The properties of sequences will be used in a short section on infinite series of real nu
发表于 2025-3-27 19:05:26 | 显示全部楼层
Gegenstand der Produktionsplanung,oint, convergent sequence and Cauchy sequence. We then defined the concept of limit for general real-valued functions of a real variable, and proved that such limits can also be defined in terms of limits of sequences. Also, before introducing the related notion of ., we introduced (in Chapter 4) th
发表于 2025-3-27 23:52:59 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87580-8erested in a larger class of functions containing simultaneously .. One of our goals in this chapter will be to introduce and study this class. Although we start with F. Riesz’s definition of a measurable function, we shall later give the more general definitions of ., ., . and prove the equivalence
发表于 2025-3-28 03:53:22 | 显示全部楼层
发表于 2025-3-28 07:55:08 | 显示全部楼层
发表于 2025-3-28 14:04:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 13:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表