找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Computer Sciences in Engineering; 11th Workshop on Eng Juan Carlos Figueroa-García,German Hernández,Elvis Conference proceedings 20

[复制链接]
楼主: 徽章
发表于 2025-3-23 12:06:39 | 显示全部楼层
https://doi.org/10.1007/978-3-662-49459-2d vehicle. This setup facilitated the collection of large datasets, which were subsequently processed using the YOLO AI algorithm to effectively detect and classify road pavement conditions. The experiment‘s results underscore the effectiveness of combining mobile mapping technology, programming, an
发表于 2025-3-23 16:44:33 | 显示全部楼层
发表于 2025-3-23 19:14:55 | 显示全部楼层
发表于 2025-3-23 22:26:53 | 显示全部楼层
发表于 2025-3-24 03:55:24 | 显示全部楼层
Deep Learning-Based Object Detection of Relevant Morphological Traits for Enhancing Automatic Classinces in recent years, especially with deep learning techniques, the complexity of emerging models still needs to accurately capture the fine morphological features that are key to manual taxonomic classification. This paper examines how a semantic detector like YOLO performs when dealing with fine-g
发表于 2025-3-24 07:34:36 | 显示全部楼层
发表于 2025-3-24 12:59:37 | 显示全部楼层
Improvement in the Management of Potable Water Distribution Using Data Science for the Detection andapproach between computational capabilities and expert judgment results in useful models that contribute to the optimal management of the water service and the utilization of modern technological tools.
发表于 2025-3-24 18:06:10 | 显示全部楼层
Wrist Motion Pattern Recognition from EMG Signal Processing Using Machine Learning and Neural Networifier achieved an accuracy of 75%. In contrast, the neural network, specifically a multilayer neural network, achieved an accuracy of 90%. Including PCA for feature selection significantly contributed to the overall performance improvement in both classifiers. This study’s findings show the potentia
发表于 2025-3-24 20:44:38 | 显示全部楼层
发表于 2025-3-24 23:11:36 | 显示全部楼层
Enhancing the Diagnostic Accuracy of Diabetes and Prediabetes with Neural Network-Based Area Under t OGTT. Artificial neural networks (ANNs) have shown significant potential in enhancing the diagnosis of diabetes and prediabetes. This study explores the application of ANNs for diagnosing diabetes and prediabetes, utilizing AUCG and AUCI as diagnostic metrics. A data set of 188 individuals diagnose
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 23:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表