找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Wei Chen,Yijie Pan Conference proceedings

[复制链接]
楼主: fundoplication
发表于 2025-3-28 15:59:03 | 显示全部楼层
Die Aufgaben der Kostenrechnung,etter focus on and utilize feature information at different scales, and achieves effective skip connections. The proposed model is evaluated on two different medical image segmentation datasets, and the results show that our model has achieved better performance in terms of accuracy.
发表于 2025-3-28 19:30:43 | 显示全部楼层
发表于 2025-3-29 02:56:30 | 显示全部楼层
https://doi.org/10.1007/978-3-322-84098-1to recover the secret image. The experimental outcomes indicate that the proposed model increases the visual effect of images, with cover images PSNR and SSIM reaching 40.36 dB and 98.18%, respectively. Therefore, the model can effectively hide images during information transmission and prevent atta
发表于 2025-3-29 05:37:28 | 显示全部楼层
发表于 2025-3-29 08:08:01 | 显示全部楼层
Grundlagen der Lebensmittelmikrobiologie, reconstruction is performed using an inverse wavelet transformation. Experimental results demonstrate that the proposed algorithm not only effectively suppresses complex noise in images and enhances the contrast of clinical pulmonary CT images but also preserves the natural appearance of images an
发表于 2025-3-29 12:23:47 | 显示全部楼层
Grundlagen der Lebensmittelmikrobiologien the first stage, we introduce a novel two-decoder architecture with collaborative learning to preliminarily decouple blur features and mitigate the learning complexity of the network. In the second stage, we propose a coupled learning module (CLM) and a feature enhancement block (FEB) to constrain
发表于 2025-3-29 18:49:35 | 显示全部楼层
发表于 2025-3-29 22:17:18 | 显示全部楼层
发表于 2025-3-30 01:47:51 | 显示全部楼层
发表于 2025-3-30 08:03:26 | 显示全部楼层
MAPNet: A Multi-scale Attention Pooling Network for Ultrasound Medical Image Segmentationetter focus on and utilize feature information at different scales, and achieves effective skip connections. The proposed model is evaluated on two different medical image segmentation datasets, and the results show that our model has achieved better performance in terms of accuracy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 05:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表