找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks in Pattern Recognition; 7th IAPR TC3 Worksho Friedhelm Schwenker,Hazem M. Abbas,Edmondo Trentin Conference proce

[复制链接]
楼主: obdurate
发表于 2025-3-26 21:39:32 | 显示全部楼层
发表于 2025-3-27 04:01:38 | 显示全部楼层
On the Harmony Search Using Quaternionsnsional spaces, non-convex functions might become too tricky to be optimized, thus requiring different representations aiming at smoother fitness landscapes. In this paper, we present a variant of the Harmony Search algorithm based on quaternions, which extend complex numbers and have been shown to
发表于 2025-3-27 08:56:20 | 显示全部楼层
发表于 2025-3-27 10:41:19 | 显示全部楼层
Towards Effective Classification of Imbalanced Data with Convolutional Neural Networksl network classifiers fail to learn to classify such datasets correctly if class-to-class separability is poor due to a strong bias towards the majority class. In this paper we present an algorithmic solution, integrating different methods into a novel approach using a class-to-class separability sc
发表于 2025-3-27 17:15:38 | 显示全部楼层
发表于 2025-3-27 19:36:31 | 显示全部楼层
Comparing Incremental Learning Strategies for Convolutional Neural Networksn and object detection, being able to extract meaningful high-level invariant features. However, partly because of their complex training and tricky hyper-parameters tuning, CNNs have been scarcely studied in the context of incremental learning where data are available in consecutive batches and ret
发表于 2025-3-27 22:07:36 | 显示全部楼层
Approximation of Graph Edit Distance by Means of a Utility Matrixf a linear sum assignment problem, the major drawback of this dissimilarity model, viz. the exponential time complexity, has been invalidated recently. Yet, the substantial decrease of the computation time is at the expense of an approximation error. The present paper introduces a novel transformati
发表于 2025-3-28 05:43:00 | 显示全部楼层
Learning Sequential Data with the Help of Linear Systemsical systems play an important role. These approaches are empirically assessed on two nontrivial datasets of sequences on a prediction task. Experimental results show that indeed linear dynamical systems can either directly provide a satisfactory solution, as well as they may be crucial for the success of more sophisticated nonlinear approaches.
发表于 2025-3-28 09:05:28 | 显示全部楼层
Co-training with Credal Modelso-training, in which a classifier strengthen another one by feeding it with new labeled data. We propose several co-training strategies to exploit the potential indeterminacy of credal classifiers and test them on several UCI datasets. We then compare the best strategy to the standard co-training process to check its efficiency.
发表于 2025-3-28 12:56:19 | 显示全部楼层
Interpretable Classifiers in Precision Medicine: Feature Selection and Multi-class Categorizationextent biomarkers that characterize pairwise differences among classes, correspond to biomarkers that discriminate one class from all remaining. We compare one-against-one and one-against-all architectures of feature selecting base classifiers. They are validated for their classification performance and their stability of feature selection.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 19:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表