找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
楼主: 谴责
发表于 2025-3-26 23:40:45 | 显示全部楼层
发表于 2025-3-27 02:34:14 | 显示全部楼层
发表于 2025-3-27 08:04:55 | 显示全部楼层
https://doi.org/10.1007/978-3-663-15999-5 To address this issue, we propose a pyramid enhanced network (PENet) and joint it with YOLOv3 to build a dark object detection framework named PE-YOLO. Firstly, PENet decomposes the image into four components of different resolutions using the Laplacian pyramid. Specifically we propose a detail pro
发表于 2025-3-27 11:40:28 | 显示全部楼层
,Grundlagen der Elastizitätstheorie,to another one often faces performance degradation due to the domain shift problem. To improve the generalization ability of object detectors, the majority of existing domain adaptation methods alleviate the domain bias either on the feature encoder or instance classifier by adversarial learning. Di
发表于 2025-3-27 16:40:58 | 显示全部楼层
Rudolf Stark (Ao. Univ.-Prof. Dipl.-Ing.) agents for years. However, Radar-based perception suffers from its unintuitive sensing data, which lack of semantic and structural information of scenes. To tackle this problem, camera and Radar sensor fusion has been investigated as a trending strategy with low cost, high reliability and strong ma
发表于 2025-3-27 19:33:32 | 显示全部楼层
,Grundlagen der Elastizitätstheorie,odels. To address these challenges, we propose SDGC-YOLOv5, a novel model based on YOLOv5. Our contributions are as follows: a) Replacement of the original convolution layer with spatial depth convolution (SD) to enable dense feature extraction and improve the detection of small objects. b) Utilizat
发表于 2025-3-28 00:41:40 | 显示全部楼层
发表于 2025-3-28 02:35:37 | 显示全部楼层
发表于 2025-3-28 08:42:46 | 显示全部楼层
发表于 2025-3-28 12:05:08 | 显示全部楼层
https://doi.org/10.1007/978-3-031-44195-0artificial neural networks (NN); machine learning; deep learning; federated learning; convolutional neur
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 19:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表