用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence for Financial Markets; The Polymodel Approa Thomas Barrau,Raphael Douady Book 2022 The Editor(s) (if applicable) an

[复制链接]
楼主: Halcyon
发表于 2025-3-25 03:24:13 | 显示全部楼层
发表于 2025-3-25 10:10:18 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-9782-1stness tests. Through the implementation of the trading strategy, we propose a method to tackle the problem of the aggregation of the predictions of a polymodel, based on the information added by each elementary model.
发表于 2025-3-25 13:52:35 | 显示全部楼层
发表于 2025-3-25 19:25:33 | 显示全部楼层
Book 2022ing polymodels in very different ways, and a genetic algorithm is describedwhich combines these different predictions into a single portfolio, aiming to optimize the portfolio returns net of transaction costs. Addressed to investors at all levels of experience this book will also be of interest to b
发表于 2025-3-25 22:28:50 | 显示全部楼层
Polymodel Theory: An Overview, how polymodels are, in several respects, a superior alternative to classical multivariate regressions estimated with OLS, Ridge and Stepwise techniques; we also present the limits of the method. Although it is a regression technique, we clarify how the polymodels framework is closer to artificial intelligence than traditional statistics.
发表于 2025-3-26 03:27:06 | 显示全部楼层
发表于 2025-3-26 05:43:43 | 显示全部楼层
https://doi.org/10.1007/978-3-030-97319-3AI for finance; Quantitative strategies; Polymodels; Machine learning; Cross section of stock returns; No
发表于 2025-3-26 11:13:57 | 显示全部楼层
978-3-030-97321-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-26 14:35:32 | 显示全部楼层
发表于 2025-3-26 20:07:44 | 显示全部楼层
Regel: Jeder Erfolg hat Spielregeln how polymodels are, in several respects, a superior alternative to classical multivariate regressions estimated with OLS, Ridge and Stepwise techniques; we also present the limits of the method. Although it is a regression technique, we clarify how the polymodels framework is closer to artificial intelligence than traditional statistics.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-4 17:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表