用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; R. Tolimieri,Myoung An,Chao Lu,C. S. Burrus (Profe Book 19891st edition Springe

[复制链接]
楼主: CK828
发表于 2025-3-25 06:41:50 | 显示全部楼层
Cooley-Tukey FFT Algorithms,structure of the indexing set . to define mappings of the input and output data vectors into 2-dimensional arrays. Algorithms are then designed, transforming 2-dimensional arrays which, when combined with these mappings, compute the .-point FFT. The stride permutations of chapter 2 play a major role
发表于 2025-3-25 09:00:27 | 显示全部楼层
发表于 2025-3-25 11:40:56 | 显示全部楼层
Good-Thomas PFA,his multiplicative structure can be applied, in the case of transform size . = ., where . and . are relatively prime, to design a FT algorithm, similar in structure to these additive algorithms, but no longer requiring the twiddle factor multiplication. The idea is due to Good [2] in 1958 and Thomas
发表于 2025-3-25 17:48:41 | 显示全部楼层
发表于 2025-3-25 23:37:36 | 显示全部楼层
Agarwal-Cooley Convolution Algorithm,hods are required. First as discussed in chapter 6, these algorithms keep the number of required multiplications small, but can require many additions. Also, each size requires a different algorithm. There is no uniform structure that can be repeatedly called upon. In this chapter, a technique simil
发表于 2025-3-26 03:08:02 | 显示全部楼层
发表于 2025-3-26 04:46:24 | 显示全部楼层
,: The Prime Case,n fact, for a prime ., . is a field and the unit group .(.) is cyclic. Reordering input and output data corresponding to a generator of .(.), the .-point FFT becomes essentially a (.−1) × .−1) . matrix. We require 2(.−1) additions to make this change. Rader computes this skew-circulant action by the
发表于 2025-3-26 12:01:15 | 显示全部楼层
发表于 2025-3-26 15:31:53 | 显示全部楼层
发表于 2025-3-26 17:29:42 | 显示全部楼层
,: Transform Size , = ,,,f relatively primes. These algorithms start with the multiplicative ring-structure of the indexing set, in the spirit of the Good-Thomas PFA and compute the resulting factorization by combining Rader and Winograd small FFT algorithms. The basic factorization is . where . is a block diagonal matrix w
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 03:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表