找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur

[复制链接]
查看: 49922|回复: 67
发表于 2025-3-21 18:28:59 | 显示全部楼层 |阅读模式
期刊全称Algorithms and Architectures for Parallel Processing
期刊简称18th International C
影响因子2023Jaideep Vaidya,Jin Li
视频videohttp://file.papertrans.cn/154/153087/153087.mp4
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Algorithms and Architectures for Parallel Processing; 18th International C Jaideep Vaidya,Jin Li Conference proceedings 2018 Springer Natur
影响因子.The four-volume set LNCS 11334-11337 constitutes the proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018..The 141 full and 50 short papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing..
Pindex Conference proceedings 2018
The information of publication is updating

书目名称Algorithms and Architectures for Parallel Processing影响因子(影响力)




书目名称Algorithms and Architectures for Parallel Processing影响因子(影响力)学科排名




书目名称Algorithms and Architectures for Parallel Processing网络公开度




书目名称Algorithms and Architectures for Parallel Processing网络公开度学科排名




书目名称Algorithms and Architectures for Parallel Processing被引频次




书目名称Algorithms and Architectures for Parallel Processing被引频次学科排名




书目名称Algorithms and Architectures for Parallel Processing年度引用




书目名称Algorithms and Architectures for Parallel Processing年度引用学科排名




书目名称Algorithms and Architectures for Parallel Processing读者反馈




书目名称Algorithms and Architectures for Parallel Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:34 | 显示全部楼层
Adaptive Data Sampling Mechanism for Process Objectve to the current underlying distribution of data in data stream. For finding appropriate data in big data stream to model process object, an adaptive data sampling mechanism is proposed in this paper. Experiments demonstrate the effectiveness of the proposed adaptive data sampling mechanism for process object.
发表于 2025-3-22 03:18:28 | 显示全部楼层
发表于 2025-3-22 04:57:39 | 显示全部楼层
发表于 2025-3-22 08:54:46 | 显示全部楼层
0302-9743 lected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing..978-3-030-05050-4978-3-030-05051-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 15:13:28 | 显示全部楼层
Bürgergesellschaft und Demokratie a scalable structure to record the access information of the vertices on each machine. Second, we prune unnecessary inter-machine communication for previously accessed vertices by checking the records. Evaluation results show that the performance of our method is at least six times higher than that of the original implementation of parallel BFS.
发表于 2025-3-22 21:04:29 | 显示全部楼层
发表于 2025-3-22 21:21:10 | 显示全部楼层
PruX: Communication Pruning of Parallel BFS in the Graph 500 Benchmark a scalable structure to record the access information of the vertices on each machine. Second, we prune unnecessary inter-machine communication for previously accessed vertices by checking the records. Evaluation results show that the performance of our method is at least six times higher than that of the original implementation of parallel BFS.
发表于 2025-3-23 05:10:45 | 显示全部楼层
https://doi.org/10.1007/978-3-322-84276-3s the fastest in computing speed benefiting from its optimization for CPU, but it suffers from long communication delay due to the dependency on MapReduce framework. The insights and conclusions from our evaluation provides significant reference for improving resource utility of supercomputer resources in distributed deep learning.
发表于 2025-3-23 07:34:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-7 08:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表