找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms and Architectures for Parallel Processing; 14th International C Xian-he Sun,Wenyu Qu,Lei Liu Conference proceedings 2014 Springe

[复制链接]
楼主: 他剪短
发表于 2025-3-25 04:20:44 | 显示全部楼层
发表于 2025-3-25 09:02:54 | 显示全部楼层
发表于 2025-3-25 13:12:34 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/153077.jpg
发表于 2025-3-25 16:33:17 | 显示全部楼层
https://doi.org/10.1007/978-3-540-78457-9er nodes and heterogeneous desktop PCs in Internet or Intranet can be integrated to form a hybrid computing environment. In this way, the computation and storage capability of large-scale desktop PCs can be fully utilized to process large-scale datasets. HybridMR relies on a hybrid distributed file
发表于 2025-3-25 22:07:13 | 显示全部楼层
https://doi.org/10.1007/978-3-662-59724-8lution. However, due to its sequential nature, .-means++ requires a large number of iterations to complete the initialization and it becomes inefficient as the size of data increase. Even though scalable .-means++ can drastically reduce the iterations and can be easily applied to the MapReduce syste
发表于 2025-3-26 00:36:14 | 显示全部楼层
发表于 2025-3-26 04:36:37 | 显示全部楼层
https://doi.org/10.1007/978-3-540-71131-5ork profiling. With the development of internet, network attacks occur frequently such as worm spreading, DDoS attack and port scanning and so on. One common characteristic of these attacks is that they usually generate a lot of traffic connections in a short time which will lead the host cardinalit
发表于 2025-3-26 08:44:21 | 显示全部楼层
发表于 2025-3-26 15:09:45 | 显示全部楼层
发表于 2025-3-26 20:19:23 | 显示全部楼层
https://doi.org/10.1007/978-3-540-71131-5 access delay. Data locality is becoming one of the most critical factors to affect performance of MapReduce clusters. As machines in MapReduce clusters have large memory capacities, which are often underutilized, in-memory prefetching input data is an effective way to improve data locality. However
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 14:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表