找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms and Architectures for Parallel Processing; 20th International C Meikang Qiu Conference proceedings 2020 Springer Nature Switzerl

[复制链接]
楼主: AMUSE
发表于 2025-3-23 11:17:08 | 显示全部楼层
发表于 2025-3-23 17:54:03 | 显示全部楼层
Design of a Convolutional Neural Network Instruction Set Based on RISC-V and Its Microarchitecture Iur work on the broadly used CNN model, LeNet-5, on Field Programmable Gate Arrays (FPGA) for the correctness validation. Comparing to traditional x86 and MIPS ISAs, our design provides a higher code density and performance efficiency.
发表于 2025-3-23 21:31:43 | 显示全部楼层
发表于 2025-3-23 22:53:19 | 显示全部楼层
QoS-Aware and Fault-Tolerant Replica Placementient heuristic algorithms. Finally the proposed algorithms are evaluated with extensive network configurations and the experimental results show that the proposed heuristic algorithms can generate solutions very close to the optimal results.
发表于 2025-3-24 05:35:54 | 显示全部楼层
发表于 2025-3-24 10:33:44 | 显示全部楼层
A Novel Clustering-Based Filter Pruning Method for Efficient Deep Neural Networkss of our approach with several network models, including VGG and ResNet. Experimental results show that on CIFAR-10, our method reduces inference costs for VGG-16 by up to 44% and ResNet-32 by up to 50%, while the accuracy can regain close to the original level.
发表于 2025-3-24 11:55:08 | 显示全部楼层
发表于 2025-3-24 16:25:32 | 显示全部楼层
https://doi.org/10.1007/978-3-662-58194-0minal devices. Experiments have revealed the characteristics of components execution in the proposed architecture, showing that the system can improve computing performance under the real-world unstable network environments.
发表于 2025-3-24 22:51:56 | 显示全部楼层
Edge-Assisted Federated Learning: An Empirical Study from Software Decomposition Perspective We conduct an empirical study on a classic convolutional neural network to validate our framework. Experiments show that this method can effectively shorten the time cost for mobile terminals to perform local training in the federated learning process.
发表于 2025-3-25 00:59:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 07:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表