找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices; Manan Suri Book 2017 Springer (India) Pvt. Ltd. 2017 Low-power Co

[复制链接]
楼主: 味觉没有
发表于 2025-3-26 21:22:41 | 显示全部楼层
Tensor-Solver for Deep Neural Network,er open design questions, particularly in the area of circuit realization, that must be explored in order for the research to move forward. This chapter reviews a number of theoretical and practical concepts related to NMS circuit design, with particular focus on neuron, synapse, and plasticity circuits.
发表于 2025-3-27 04:28:01 | 显示全部楼层
发表于 2025-3-27 07:42:54 | 显示全部楼层
发表于 2025-3-27 11:29:08 | 显示全部楼层
https://doi.org/10.1007/978-81-322-3703-7Low-power Cognitive Hardware; Memristor; Neuromorphic Hardware; Resistive Memory Technology; Supervised
发表于 2025-3-27 17:03:52 | 显示全部楼层
发表于 2025-3-27 21:33:02 | 显示全部楼层
发表于 2025-3-27 23:46:53 | 显示全部楼层
发表于 2025-3-28 05:35:17 | 显示全部楼层
Henk C. de Graaff,François M. Klaassenrdware artificial neural networks (ANNs). Ongoing attempts to realize neuronal behaviours on Si ‘to a limited extent’ are addressed in comparison with biological neurons. Note that ‘to a limited extent’ in this context implicitly means ‘sufficiently’ for realizing key features of neurons as informat
发表于 2025-3-28 08:34:39 | 显示全部楼层
发表于 2025-3-28 13:38:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 09:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表