找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Neural Networks - ISNN 2004; International Sympos Fu-Liang Yin,Jun Wang,Chengan Guo Conference proceedings 2004 Springer-Verlag

[复制链接]
查看: 53270|回复: 67
发表于 2025-3-21 16:54:57 | 显示全部楼层 |阅读模式
期刊全称Advances in Neural Networks - ISNN 2004
期刊简称International Sympos
影响因子2023Fu-Liang Yin,Jun Wang,Chengan Guo
视频video
发行地址Includes supplementary material:
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Advances in Neural Networks - ISNN 2004; International Sympos Fu-Liang Yin,Jun Wang,Chengan Guo Conference proceedings 2004 Springer-Verlag
影响因子This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition
Pindex Conference proceedings 2004
The information of publication is updating

书目名称Advances in Neural Networks - ISNN 2004影响因子(影响力)




书目名称Advances in Neural Networks - ISNN 2004影响因子(影响力)学科排名




书目名称Advances in Neural Networks - ISNN 2004网络公开度




书目名称Advances in Neural Networks - ISNN 2004网络公开度学科排名




书目名称Advances in Neural Networks - ISNN 2004被引频次




书目名称Advances in Neural Networks - ISNN 2004被引频次学科排名




书目名称Advances in Neural Networks - ISNN 2004年度引用




书目名称Advances in Neural Networks - ISNN 2004年度引用学科排名




书目名称Advances in Neural Networks - ISNN 2004读者反馈




书目名称Advances in Neural Networks - ISNN 2004读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:13:15 | 显示全部楼层
978-3-540-22843-1Springer-Verlag Berlin Heidelberg 2004
发表于 2025-3-22 03:10:16 | 显示全部楼层
Advances in Neural Networks - ISNN 2004978-3-540-28648-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 07:25:28 | 显示全部楼层
Networking Models and Standards,nt trajectories to adjust humanoid robot step length and step time based on the sensor information. Compared with GA, RBFNN use less time to generate new trajectory to deal with sudden obstacles after thorough training. The performance of the proposed method is validated by simulation of a 28 DOF humanoid robot model with ADAMS.
发表于 2025-3-22 09:43:44 | 显示全部楼层
https://doi.org/10.1007/978-1-84628-645-2attenuate the effect of external distributes and parametric uncertainties of the robotic systems. Then a simulation example of 2-DOF robotic systems is given at last, from the simulation results, we can see the well performance of the designed observer and the estimation errors of the joint velocities are negligible.
发表于 2025-3-22 13:50:38 | 显示全部楼层
发表于 2025-3-22 19:36:46 | 显示全部楼层
发表于 2025-3-22 23:08:37 | 显示全部楼层
Fu-Liang Yin,Jun Wang,Chengan GuoIncludes supplementary material:
发表于 2025-3-23 02:09:26 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/149140.jpg
发表于 2025-3-23 06:11:15 | 显示全部楼层
Networking Models and Standards,nt trajectories to adjust humanoid robot step length and step time based on the sensor information. Compared with GA, RBFNN use less time to generate new trajectory to deal with sudden obstacles after thorough training. The performance of the proposed method is validated by simulation of a 28 DOF hu
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 09:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表