找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Data-Driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish C. Bansal Conference pr

[复制链接]
楼主: FROM
发表于 2025-3-25 04:05:26 | 显示全部楼层
Advances in Data-Driven Computing and Intelligent Systems978-981-99-9524-0Series ISSN 2367-3370 Series E-ISSN 2367-3389
发表于 2025-3-25 10:30:50 | 显示全部楼层
发表于 2025-3-25 15:02:31 | 显示全部楼层
发表于 2025-3-25 16:12:20 | 显示全部楼层
发表于 2025-3-25 20:28:54 | 显示全部楼层
发表于 2025-3-26 01:19:31 | 显示全部楼层
2367-3370 The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book is useful for academicians, research scholars, and industry persons.978-981-99-9523-3978-981-99-9524-0Series ISSN 2367-3370 Series E-ISSN 2367-3389
发表于 2025-3-26 04:45:23 | 显示全部楼层
Caves and Karst of Turkey - Vol. 1served that the proposed model (DLN-SD) brings 96.0% precision, 98.0% recall, and 98.0% accuracy and performs best among all three models. It is concluded that the DLN-SD shows an improvement of 15% over AlexNet and 9% over GoogleNet to detect seizures from the EEG dataset.
发表于 2025-3-26 10:21:20 | 显示全部楼层
Cave and Karst Systems of the Worldp utilized to reflects the characteristics of the human motion. The CNN-based proposed system can steadily outperforms abnormal behavior detection, especially for the lightweight models when given a small among of training samples.
发表于 2025-3-26 14:38:56 | 显示全部楼层
Geology of the Greenbrier Valley,iction Dataset. The prediction performance of each model was evaluated using mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (. score). The results suggested that among all the evaluated models, the XGBoost Regressor model was the most suitable prediction model for soil properties.
发表于 2025-3-26 18:30:29 | 显示全部楼层
Greg A. Brick,E. Calvin Alexander Jr.l imaging systems, RT-PCR, ELISA, etc. are capable of overcoming these limitations of food safety practices by using the ML algorithms. The ML technique has great potential to overcome food safety issues and future applications in the food sector.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 22:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表