找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Data and Information Sciences; Proceedings of ICDIS Mohan L. Kolhe,Munesh C. Trivedi,Vikash Kumar Sing Conference proceedings 2

[复制链接]
楼主: CLIP
发表于 2025-3-26 22:59:27 | 显示全部楼层
Texts in Quantitative Political Analysiswitter data sets, one Disease related tweets set prepared by us using five different disease keywords and an other benchmark Seattle data set consisting of incident-related tweets. The modified ML-KNN is able to improve the performance of conventional ML-KNN with a minimum of 5% in both the datasets.
发表于 2025-3-27 03:02:17 | 显示全部楼层
https://doi.org/10.1007/978-94-011-3348-7xtract the semantic information from the images. We collect shared images from Flicker specifying various sports events that users attend. Images are divided into three event classes, i.e. bikes, water and ground. After extensive experimentation using CNN, for training and classifying images, we obtain an accuracy of 98.7%.
发表于 2025-3-27 07:48:01 | 显示全部楼层
2367-3370 (ICDIS 2017), held at Indira Gandhi National Tribal Universi.The book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Data and Information Systems (ICDIS 2017), held at Indira Gandhi National Tribal University, India from November 3 to
发表于 2025-3-27 12:29:55 | 显示全部楼层
https://doi.org/10.1007/978-94-009-0495-8rust of recommender system, it is required to identify and remove the fictitious profiles from the system. Here, we have used machine learning classifiers to detect the attacker’s profiles. A new model is proposed that outperforms in most of the cases.
发表于 2025-3-27 16:19:36 | 显示全部楼层
发表于 2025-3-27 21:25:14 | 显示全部楼层
发表于 2025-3-28 02:00:24 | 显示全部楼层
发表于 2025-3-28 04:28:46 | 显示全部楼层
发表于 2025-3-28 09:52:04 | 显示全部楼层
发表于 2025-3-28 10:40:50 | 显示全部楼层
https://doi.org/10.1007/978-981-13-0277-0Data Sciences; Information Science; ICDIS 2017; ICDIS; Information Security; Big Data and Cloud Computing
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 18:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表