找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Robot Control; Proceedings of the I Carlos Canudas de Wit Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Adapt

[复制链接]
楼主: Taylor
发表于 2025-3-26 23:52:45 | 显示全部楼层
发表于 2025-3-27 05:03:06 | 显示全部楼层
A. Diana Andrushia,R. Thangarjaneigenvalues are needed. This paper proposes a control scheme which combines an adaptive control law with a sliding observer and needs no additional assumptions on the variation of the inertia matrix eigenvalues A local stable closed-loop system results from this combination.
发表于 2025-3-27 09:11:55 | 显示全部楼层
Mirela Toth-Tascau,Dan Ioan Stoiasition and orientation is established. This result does not contradict earlier non-existence results because the stabilizing controls depend not only on the robot‘s configuration variables but also on the exogeneous time variable.
发表于 2025-3-27 10:49:51 | 显示全部楼层
发表于 2025-3-27 14:49:28 | 显示全部楼层
发表于 2025-3-27 20:16:41 | 显示全部楼层
发表于 2025-3-27 22:45:40 | 显示全部楼层
Niching for Ant Colony Optimisation,ory generation, associated reference state computation, and different feedforward/feedback realizations of the regulation concept. Extensive simulations on a simple but representative case study validate the analysis and allow to compare the various approaches.
发表于 2025-3-28 03:45:47 | 显示全部楼层
https://doi.org/10.1007/978-3-540-29018-6bilities and the couplings between the two links for reasonable displacements. To this end, a long range predictive control with a precompensator is used to decouple with stability and to compensate for the vibration modes. Some experimental results on the flexible arm are given.
发表于 2025-3-28 09:22:05 | 显示全部楼层
Biologics in Cutaneous Lymphomarobot upon the dynamic behaviour of the estimation errors. The Liapunov stability theory has been used to prove the practical stability of the error dynamics, in case of open-loop observers, and the asymptotic stability of the closed loop robotic system, in case of observer-based control laws.
发表于 2025-3-28 11:07:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-18 13:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表