找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Adaptive Dynamic Programming: Single and Multiple Controllers; Ruizhuo Song,Qinglai Wei,Qing Li Book 2019 Science Press, Beijing and Sprin

[复制链接]
楼主: 拼图游戏
发表于 2025-3-27 00:44:47 | 显示全部楼层
https://doi.org/10.1007/978-981-13-1712-5Optimal control; Multi-player games; Adaptive dynamic programming; Nonlinear systems; Neural network-bas
发表于 2025-3-27 04:17:07 | 显示全部楼层
发表于 2025-3-27 06:22:11 | 显示全部楼层
发表于 2025-3-27 12:37:46 | 显示全部楼层
发表于 2025-3-27 16:48:45 | 显示全部楼层
https://doi.org/10.1007/978-3-031-46375-4he weighted sum technology, the original multi-objective optimal control problem is transformed to the single one. An ADP method is established for nonlinear time-delay systems to solve the optimal control problem. To demonstrate the presented iterative performance index function sequence is converg
发表于 2025-3-27 21:13:06 | 显示全部楼层
https://doi.org/10.1007/978-3-031-46375-4tuation, this chapter proposes multiple actor-critic structures to obtain the optimal control via input-output data for unknown nonlinear systems. The shunting inhibitory artificial neural network (SIANN) is used to classify the input-output data into one of several categories. Different performance
发表于 2025-3-28 00:38:59 | 显示全部楼层
发表于 2025-3-28 05:04:04 | 显示全部楼层
Polyphony: Authorship and Power,obi–Bellman (HJB) equation. Off-policy learning allows the iterative performance index and iterative control to be obtained by completely unknown dynamics. Critic and action networks are used to get the iterative control and iterative performance index, which execute policy evaluation and policy imp
发表于 2025-3-28 06:18:39 | 显示全部楼层
Lakshmi Bandlamudi,E. V. Ramakrishnangorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index fu
发表于 2025-3-28 14:23:37 | 显示全部楼层
Bakhtinian Explorations of Indian Cultureing (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks (NN) are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 22:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表