找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web Technologies and Applications; 17th Asia-Pacific We Reynold Cheng,Bin Cui,Jia Xu Conference proceedings 2015 Springer International Pub

[复制链接]
楼主: 女孩
发表于 2025-3-28 17:02:23 | 显示全部楼层
发表于 2025-3-28 19:59:59 | 显示全部楼层
发表于 2025-3-29 00:55:12 | 显示全部楼层
发表于 2025-3-29 05:02:13 | 显示全部楼层
An Online Inference Algorithm for Labeled Latent Dirichlet Allocationpora and text streams. In this paper, we develop an efficient online algorithm for Labeled LDA, called .(online-LLDA). It is based on particle filter, a Sequential Monte Carlo approximation technique. Our experiments show that online-LLDA significantly outperforms batch algorithm(batch-LLDA) in time, while preserving equivalent quality.
发表于 2025-3-29 09:01:42 | 显示全部楼层
发表于 2025-3-29 14:13:57 | 显示全部楼层
An Online Inference Algorithm for Labeled Latent Dirichlet Allocationpora and text streams. In this paper, we develop an efficient online algorithm for Labeled LDA, called .(online-LLDA). It is based on particle filter, a Sequential Monte Carlo approximation technique. Our experiments show that online-LLDA significantly outperforms batch algorithm(batch-LLDA) in time, while preserving equivalent quality.
发表于 2025-3-29 17:49:53 | 显示全部楼层
An Ensemble Matchers Based Rank Aggregation Method for Taxonomy Matchingaxonomy matchers and generating an optimal taxonomy mapping. And we introduce TRA, a Threshold Rank Aggregation algorithm for this problem. Experimental results show that TRA outperforms state-of-the-art approaches regardless of domains and scales of taxonomies, which demonstrates that TRA performs good adaptability to taxonomy matching.
发表于 2025-3-29 21:38:26 | 显示全部楼层
Distributed XML Twig Query Processing Using MapReducere no knowledge of query pattern; twig queries can be efficiently processed in a single-round MapReduce job with good scalability. Extensive experiments are conducted to verify the efficiency and scalability of our algorithms.
发表于 2025-3-30 01:02:39 | 显示全部楼层
发表于 2025-3-30 06:07:37 | 显示全部楼层
Sentiment Word Identification with Sentiment Contextual Factorsnstead of seed words, we exploit sentiment matching and sentiment consistency for modeling. Extensive experimental studies on three real-world datasets demonstrate that our models outperform the state-of-the-art approaches.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 16:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表