找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web Information Systems and Applications; 20th International C Long Yuan,Shiyu Yang,Xiang Zhao Conference proceedings 2023 The Editor(s) (i

[复制链接]
楼主: encroach
发表于 2025-4-1 03:55:06 | 显示全部楼层
GENE: Global Enhanced Graph Neural Network Embedding for Session-Based Recommendationsed on the order in which the items interact in the session with normalization. Second, we employ a graph neural network to obtain the latent vectors of items, then we represent the session graph by attention mechanisms. Third, we explore the session representation fusion for prediction incorporatin
发表于 2025-4-1 07:20:59 | 显示全部楼层
发表于 2025-4-1 14:13:43 | 显示全部楼层
发表于 2025-4-1 15:41:48 | 显示全部楼层
Research on Predicting the Impact of Venue Based on Academic Heterogeneous Networkattribute features effectively. To solve the above problems, we propose a hybrid model of academic heterogeneous network representation learning combined with multivariate random walk, termed as AHRV. The specific content is to mine the heterogeneous local network information of nodes in the academi
发表于 2025-4-1 21:17:06 | 显示全部楼层
发表于 2025-4-2 01:53:45 | 显示全部楼层
Knowledge Graph Completion with Fused Factual and Commonsense Information based on the analytic hierarchy process. The obtained commonsense can further improve the quality of negative samples and the effectiveness of link prediction. Experimental results on four datasets of the knowledge graph completion (KGC) task show that our method can improve the performance of the original knowledge graph embedding (KGE) model.
发表于 2025-4-2 05:57:34 | 显示全部楼层
Finding Introverted Cores in Bipartite Graphss inside focus on the products in the subgraph. We propose an .(.) algorithm to compute the .-core with given . and .. Besides, we introduce an efficient algorithm to decompose a graph by the .-core. The experiments on real-world data demonstrate that our model is effective and our proposed algorithms are efficient.
发表于 2025-4-2 09:31:28 | 显示全部楼层
发表于 2025-4-2 14:30:57 | 显示全部楼层
发表于 2025-4-2 16:57:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 02:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表