Mammal 发表于 2025-3-26 21:47:12

Basic Notions,Let the rings under consideration be assumed to be associative with unit and all the modules be unitary and almost everywhere right. So we shall write the homomorphisms of right (left) modules from the left (right).

Serenity 发表于 2025-3-27 02:10:52

http://reply.papertrans.cn/87/8655/865425/865425_32.png

自恋 发表于 2025-3-27 08:32:39

Classical Localizations in Serial Rings,In this section we show that ‘almost all’ classical localizations in a serial ring are the localizations at a semi-prime Goldie ideal. For an ideal . of a ring . by .(.) we denote the set of elements of . whose images are nonzero divisors in ..

名字 发表于 2025-3-27 12:26:04

Serial Prime Goldie Rings,Let us recall that . = Jac(.), . = 1,..., ..

MUTE 发表于 2025-3-27 17:26:53

http://reply.papertrans.cn/87/8655/865425/865425_35.png

安慰 发表于 2025-3-27 17:55:12

http://reply.papertrans.cn/87/8655/865425/865425_36.png

大范围流行 发表于 2025-3-28 01:05:20

Indecomposable Pure Injective Modules over Serial Rings,Let . be an indecomposable idempotent of a serial ring .. A pp-type .(.) is called an . if . | . ∈ .; and pp-formula .(.) is an . if . → . | .. For example, the pp-formula . | . for . ∈ . is an .-formula. A . is a pair 〈., .〉, where . ⊂ . is a right ideal and . ⊂ . is a left ideal of ..

前兆 发表于 2025-3-28 05:53:59

Super-Decomposable Pure Injective Modules over Commutative Valuation Rings,A module . is called . if it contains no indecomposable direct summand. In particular, . = . ⊕ ., . = . ⊕ ., . = . ⊕ . for nonzero ., and so on.

anthesis 发表于 2025-3-28 09:07:51

Pure Injective Modules over Commutative Valuation Domains,In this section we classify in particular, pure injective modules .(.) over commutative valuation domains. But first let us recall some definitions and facts.

Mhc-Molecule 发表于 2025-3-28 10:32:26

Pure Projective Modules over Nearly Simple Uniserial Domains,First let us recall some results about a decomposition of projective modules and an equivalence of categories which will be used in the sequel.
页: 1 2 3 [4] 5 6 7
查看完整版本: Titlebook: Serial Rings; Gennadi Puninski Book 2001 Springer Science+Business Media Dordrecht 2001 Finite.Morphism.algebra.commutative property.endom