领巾 发表于 2025-3-28 17:06:35
Pure Projective Modules over Exceptional Uniserial Rings,A uni-serial ring . is said to be . if Jac(.) is a unique nonzero two-sided ideal of . and Jac.(.) ≠ 0. Similarly to Lemma 14.11 it is possible to prove that a nearly simple uni-serial ring does not have Krull dimension and not semi-duo. A uni-serial ring . is called . if . is nearly simple, prime, and contains zero divisors.Exploit 发表于 2025-3-28 18:44:39
,Σ-Pure Injective Modules over Serial Rings,A module . is called Σ-. (Σ-.) if for every set . the direct sum . is an injective (pure injective) module. The following result gives a model-theoretical interpretation of this notion.Flatter 发表于 2025-3-28 23:46:42
http://reply.papertrans.cn/87/8655/865425/865425_43.pngDignant 发表于 2025-3-29 04:09:24
http://reply.papertrans.cn/87/8655/865425/865425_44.png值得尊敬 发表于 2025-3-29 08:46:03
http://reply.papertrans.cn/87/8655/865425/865425_45.png停止偿付 发表于 2025-3-29 14:41:56
http://reply.papertrans.cn/87/8655/865425/865425_46.png套索 发表于 2025-3-29 17:57:53
http://reply.papertrans.cn/87/8655/865425/865425_47.pngOTHER 发表于 2025-3-29 23:39:22
could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to considTriglyceride 发表于 2025-3-30 00:49:34
Book 2001 the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requi相反放置 发表于 2025-3-30 07:25:27
Psychologische Auswirkungen sogenannter schwerer anderer seelischer Abartigkeit,s Rahmenkonzept eingebunden. Dieses hat die Funktion, die zahlreichen phänomenologisch heterogenen Konzeptionen der SASA innerhalb einer persönlichkeitspsychologischen Konzeptualisierung zu verankern. Dies geschieht notwendigerweise zuerst auf einer abstrakt-modellhaften Ebene (vgl. Kap. 4.1), um da