弄混 发表于 2025-3-21 16:55:53

书目名称Reinforcement Learning影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0825932<br><br>        <br><br>书目名称Reinforcement Learning读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0825932<br><br>        <br><br>

Introduction 发表于 2025-3-21 21:23:08

http://reply.papertrans.cn/83/8260/825932/825932_2.png

conduct 发表于 2025-3-22 01:07:47

Least-Squares Methods for Policy Iterationor the overall resulting approximate policy iteration, we provide guarantees on the performance obtained asymptotically, as the number of samples processed and iterations executed grows to infinity. We also provide finite-sample results, which apply when a finite number of samples and iterations are

animated 发表于 2025-3-22 07:52:28

Learning and Using Modelshe types of models used in model-based methods and ways of learning them, as well as methods for planning on these models. In addition, we examine the typical architectures for combining model learning and planning, which vary depending on whether the designer wants the algorithm to run on-line, in

序曲 发表于 2025-3-22 10:01:53

Reinforcement Learning in Continuous State and Action Spacesblems and discuss many specific algorithms. Amongst others, we cover gradient-based temporal-difference learning, evolutionary strategies, policy-gradient algorithms and (natural) actor-critic methods. We discuss the advantages of different approaches and compare the performance of a state-of-the-ar

样式 发表于 2025-3-22 13:27:37

Predictively Defined Representations of Stateal system problem, it is particularly useful in a model-based RL context, when an agent must learn a representation of state and a model of system dynamics online: because the representation (and hence all of the model’s parameters) are defined using only statistics of observable quantities, their l

擦试不掉 发表于 2025-3-22 18:19:36

http://reply.papertrans.cn/83/8260/825932/825932_7.png

GRAZE 发表于 2025-3-22 23:48:44

http://reply.papertrans.cn/83/8260/825932/825932_8.png

使成整体 发表于 2025-3-23 02:45:51

wird. Darüber hinaus sind ihrer Überzeugung nach Begabung und Persönlichkeit bedeutsam. Nach Darstellung der Studie und einer Interpretation der Ergebnisse werden abschließend Konsequenzen für eine nachhaltige Wirksamkeit des Praxissemesters mit dem Format des Forschenden Lernens diskutiert.

ambivalence 发表于 2025-3-23 08:58:40

genen Handlungssituationen, auf die Auseinandersetzung mit Unterrichtsbeobachtungen als Reflexionsfolie für eine theoretisch gestützte Diskussion professionellen Handelns sowie auf den ebenfalls theoriegestützten Entwurf von Handlungsalternativen. Gerahmt wird die eigenständige forschungsbezogene Ak
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Reinforcement Learning; State-of-the-Art Marco Wiering,Martijn Otterlo Book 2012 Springer-Verlag Berlin Heidelberg 2012 Artificial Intellig