CLOG 发表于 2025-3-21 18:04:56

书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0541469<br><br>        <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0541469<br><br>        <br><br>

Parallel 发表于 2025-3-21 23:05:32

http://reply.papertrans.cn/55/5415/541469/541469_2.png

地牢 发表于 2025-3-22 00:23:57

Andrea Loi,Michela Zeddaand a detailed bibliography make it easy to go beyond the presented material if desired..From the reviews of the first edition:. “…readers are likely to regard the book as an ideal reference. Indeed the monogra978-3-030-61873-5978-3-030-61871-1Series ISSN 2199-3130 Series E-ISSN 2199-3149

按等级 发表于 2025-3-22 08:03:18

http://reply.papertrans.cn/55/5415/541469/541469_4.png

Nonthreatening 发表于 2025-3-22 11:34:50

http://reply.papertrans.cn/55/5415/541469/541469_5.png

Pessary 发表于 2025-3-22 15:31:48

,Homogeneous Kähler Manifolds,eorem 3.2), will be applied in Sect. 3.2 to classify homogeneous Kähler manifolds admitting a Kähler immersion into . or ., . ≤. (Theorem 3.3).In the last three sections we consider Kähler immersions of homogeneous Kähler manifolds into ., . ≤.. The general case is discussed in Sect. 3.3, while in S

水槽 发表于 2025-3-22 19:49:28

,Kähler–Einstein Manifolds,s into complex space forms. We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies Kähler–Einstein manifolds admitting a Kähler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what is

Humble 发表于 2025-3-22 22:39:50

http://reply.papertrans.cn/55/5415/541469/541469_8.png

HILAR 发表于 2025-3-23 02:10:28

http://reply.papertrans.cn/55/5415/541469/541469_9.png

学术讨论会 发表于 2025-3-23 05:43:33

http://reply.papertrans.cn/55/5415/541469/541469_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Kähler Immersions of Kähler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com