CLOG 发表于 2025-3-21 18:04:56
书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0541469<br><br> <br><br>书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0541469<br><br> <br><br>Parallel 发表于 2025-3-21 23:05:32
http://reply.papertrans.cn/55/5415/541469/541469_2.png地牢 发表于 2025-3-22 00:23:57
Andrea Loi,Michela Zeddaand a detailed bibliography make it easy to go beyond the presented material if desired..From the reviews of the first edition:. “…readers are likely to regard the book as an ideal reference. Indeed the monogra978-3-030-61873-5978-3-030-61871-1Series ISSN 2199-3130 Series E-ISSN 2199-3149按等级 发表于 2025-3-22 08:03:18
http://reply.papertrans.cn/55/5415/541469/541469_4.pngNonthreatening 发表于 2025-3-22 11:34:50
http://reply.papertrans.cn/55/5415/541469/541469_5.pngPessary 发表于 2025-3-22 15:31:48
,Homogeneous Kähler Manifolds,eorem 3.2), will be applied in Sect. 3.2 to classify homogeneous Kähler manifolds admitting a Kähler immersion into . or ., . ≤. (Theorem 3.3).In the last three sections we consider Kähler immersions of homogeneous Kähler manifolds into ., . ≤.. The general case is discussed in Sect. 3.3, while in S水槽 发表于 2025-3-22 19:49:28
,Kähler–Einstein Manifolds,s into complex space forms. We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies Kähler–Einstein manifolds admitting a Kähler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what isHumble 发表于 2025-3-22 22:39:50
http://reply.papertrans.cn/55/5415/541469/541469_8.pngHILAR 发表于 2025-3-23 02:10:28
http://reply.papertrans.cn/55/5415/541469/541469_9.png学术讨论会 发表于 2025-3-23 05:43:33
http://reply.papertrans.cn/55/5415/541469/541469_10.png