能得到 发表于 2025-3-23 13:19:19

http://reply.papertrans.cn/55/5415/541469/541469_11.png

漂泊 发表于 2025-3-23 14:26:42

http://reply.papertrans.cn/55/5415/541469/541469_12.png

胆小懦夫 发表于 2025-3-23 19:17:48

http://reply.papertrans.cn/55/5415/541469/541469_13.png

Headstrong 发表于 2025-3-23 23:48:18

http://reply.papertrans.cn/55/5415/541469/541469_14.png

Chivalrous 发表于 2025-3-24 04:30:02

http://reply.papertrans.cn/55/5415/541469/541469_15.png

失望未来 发表于 2025-3-24 09:00:36

The Diastasis Function,r manifolds into complex space forms. In Sect. 1.1 we define the diastasis function and summarize its basic properties, while in Sect. 1.2 we describe the diastasis functions of complex space forms, which represent the basic examples of Kähler manifolds. Finally, in Sect. 1.3 we give the formal defi

TATE 发表于 2025-3-24 13:22:04

,Calabi’s Criterion,nfinite dimensional complex space form. In particular, Calabi provides an algebraic criterion to find out whether a complex manifold admits or not such an immersion. Sections 2.1 and 2.2 are devoted to illustrate Calabi’s criterionfor Kähler immersions into the complex Euclidean space and nonflat co

释放 发表于 2025-3-24 18:41:01

http://reply.papertrans.cn/55/5415/541469/541469_18.png

predict 发表于 2025-3-24 19:23:43

http://reply.papertrans.cn/55/5415/541469/541469_19.png

袖章 发表于 2025-3-25 03:00:45

http://reply.papertrans.cn/55/5415/541469/541469_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Kähler Immersions of Kähler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com