Blandishment 发表于 2025-3-21 18:48:08

书目名称Homogeneous Finsler Spaces影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0428114<br><br>        <br><br>书目名称Homogeneous Finsler Spaces读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0428114<br><br>        <br><br>

armistice 发表于 2025-3-21 23:48:04

Homogeneous Finsler Spaces978-1-4614-4244-8Series ISSN 1439-7382 Series E-ISSN 2196-9922

Exhilarate 发表于 2025-3-22 03:20:29

http://reply.papertrans.cn/43/4282/428114/428114_3.png

嘲弄 发表于 2025-3-22 06:35:23

Shaoqiang DengPresents the most recent results on the applications of Lie theory to Finsler geometry.Provides an accessible introduction to Finsler geometry that allows the reader to quickly understand topics and t

阐释 发表于 2025-3-22 10:00:00

http://reply.papertrans.cn/43/4282/428114/428114_5.png

Genome 发表于 2025-3-22 14:15:15

http://reply.papertrans.cn/43/4282/428114/428114_6.png

手术刀 发表于 2025-3-22 20:21:41

Homogeneous Finsler Spaces,s not diffeomorphic to a rank-one Riemannian symmetric space, then its degree of symmetry can be realized by a non-Riemannian Finsler metric. Finally, in Sect. 4.5, we study fourth-root homogeneous Finsler metrics. As an explicit example, we give a classification of all invariant fourth-root Finsler metrics on Grassmannian manifolds.

高射炮 发表于 2025-3-23 00:37:43

Introduction to Finsler Geometry,e notions of Berwald spaces and Landsberg spaces. In Sect. ., we recall Shen’s definition of S-curvature of Finsler spaces. Finally, in Sect.., we collect some results on Finsler spaces of constant flag curvature as well as Einstein–Finsler spaces, and present the Akbar–Zadeh theorem.

Abbreviate 发表于 2025-3-23 03:10:10

Lie Groups and Homogeneous Spaces,differential geometry. Section . is devoted to introducing the structure and classification of complex semisimple Lie algebras. In Sect. ., we collect some important results on homogeneous Riemannian manifolds. Finally, in Sect. ., we present the theory of Riemannian symmetric spaces.

GONG 发表于 2025-3-23 09:11:03

Symmetric Finsler Spaces,ct. 5.4, we prove some interesting rigidity results on symmetric Finsler spaces. Finally, in Sect. 5.1, we study complex structures on symmetric Finsler spaces and obtain a complete classification of the complex symmetric Finsler spaces.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Homogeneous Finsler Spaces; Shaoqiang Deng Book 2012 Springer Science+Business Media New York 2012 Finsler geometry.Killing vector fields.