神像之光环 发表于 2025-3-21 16:55:19

书目名称Health Care Education影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0424633<br><br>        <br><br>书目名称Health Care Education读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0424633<br><br>        <br><br>

挥舞 发表于 2025-3-21 23:26:05

we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.

calorie 发表于 2025-3-22 00:29:21

http://reply.papertrans.cn/43/4247/424633/424633_3.png

Intuitive 发表于 2025-3-22 06:48:06

http://reply.papertrans.cn/43/4247/424633/424633_4.png

浮雕宝石 发表于 2025-3-22 09:45:55

http://reply.papertrans.cn/43/4247/424633/424633_5.png

AGGER 发表于 2025-3-22 13:56:23

Alan Walker,John Humphreys we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.

d-limonene 发表于 2025-3-22 20:03:29

Ray Land,John Humphreys we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.

是剥皮 发表于 2025-3-23 00:53:42

Bill Bailey,John Humphreys we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.

发源 发表于 2025-3-23 02:54:00

Stephanie Stanwick we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.

laparoscopy 发表于 2025-3-23 07:03:40

http://reply.papertrans.cn/43/4247/424633/424633_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Health Care Education; The Challenge of the John Humphreys,Francis M. Quinn Book 1994 Springer Science+Business Media Dordrecht 1994 Instit