孤僻 发表于 2025-3-26 21:15:26

http://reply.papertrans.cn/39/3820/381955/381955_31.png

马笼头 发表于 2025-3-27 05:09:07

http://reply.papertrans.cn/39/3820/381955/381955_32.png

嘲弄 发表于 2025-3-27 09:08:27

https://doi.org/10.1007/978-1-4939-8882-2Bayesian networks; Gaussian processes; data simulation; time series expression; single-cell transcriptom

jettison 发表于 2025-3-27 09:31:17

https://doi.org/10.1007/978-3-642-51832-4t developments in speed and accuracy have enabled whole-transcriptome causal network inference on a personal computer. Here, we demonstrate this technique with program Findr on 3000 genes from the Geuvadis dataset. Subsequent analysis reveals major hub genes in the reconstructed network.

TEN 发表于 2025-3-27 16:22:47

http://reply.papertrans.cn/39/3820/381955/381955_35.png

大吃大喝 发表于 2025-3-27 18:47:32

http://reply.papertrans.cn/39/3820/381955/381955_36.png

令人悲伤 发表于 2025-3-27 22:42:34

http://reply.papertrans.cn/39/3820/381955/381955_37.png

parallelism 发表于 2025-3-28 05:00:17

Learning Differential Module Networks Across Multiple Experimental Conditions,module network inference, present protocols for common gene regulatory network reconstruction scenarios based on the Lemon-Tree software, and show, using human gene expression data, how the software can also be applied to learn differential module networks across multiple experimental conditions.

较早 发表于 2025-3-28 08:10:53

http://reply.papertrans.cn/39/3820/381955/381955_39.png

垄断 发表于 2025-3-28 12:56:30

http://reply.papertrans.cn/39/3820/381955/381955_40.png
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: Gene Regulatory Networks; Methods and Protocol Guido Sanguinetti,Vân Anh Huynh-Thu Book 2019 Springer Science+Business Media, LLC, part of