裹住 发表于 2025-3-28 18:21:52

http://reply.papertrans.cn/39/3820/381955/381955_41.png

legacy 发表于 2025-3-28 19:35:43

E. Lütjen-Drecoll,P. Steuhl,W. H. Arnoldmodule network inference, present protocols for common gene regulatory network reconstruction scenarios based on the Lemon-Tree software, and show, using human gene expression data, how the software can also be applied to learn differential module networks across multiple experimental conditions.

LAIR 发表于 2025-3-29 02:16:52

https://doi.org/10.1007/978-3-662-63874-3n of deterministic and stochastic frameworks, and the quantitative modelling of regulation. We particularly focus on the use of such models for the simulation of expression data that can serve as a benchmark for the testing of network inference algorithms.

bypass 发表于 2025-3-29 06:02:35

https://doi.org/10.1007/978-3-662-63596-4f such large-scale models, most algorithms require intractably high computation times. This chapter provides an overview of the state-of-the-art methods for parameter and model inference, with an emphasis on scalability.

挖掘 发表于 2025-3-29 11:02:12

http://reply.papertrans.cn/39/3820/381955/381955_45.png

捕鲸鱼叉 发表于 2025-3-29 13:05:34

http://reply.papertrans.cn/39/3820/381955/381955_46.png

PAEAN 发表于 2025-3-29 17:57:46

http://reply.papertrans.cn/39/3820/381955/381955_47.png

TEN 发表于 2025-3-29 22:41:08

,Aus der forstlichen Geräthekammer,actical applications with pointers to publicly available software implementations are included. The chapter concludes with a comprehensive comparative benchmark study on simulated data and a real-work application taken from the current plant systems biology.

神化怪物 发表于 2025-3-30 01:27:20

http://reply.papertrans.cn/39/3820/381955/381955_49.png

思想上升 发表于 2025-3-30 07:03:55

http://reply.papertrans.cn/39/3820/381955/381955_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Gene Regulatory Networks; Methods and Protocol Guido Sanguinetti,Vân Anh Huynh-Thu Book 2019 Springer Science+Business Media, LLC, part of