FLAK 发表于 2025-3-21 17:26:17

书目名称Computational Excursions in Analysis and Number Theory影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0232281<br><br>        <br><br>书目名称Computational Excursions in Analysis and Number Theory读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0232281<br><br>        <br><br>

dysphagia 发表于 2025-3-22 00:18:49

1613-5237 nly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and inclu978-1-4419-3000-2978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152

惹人反感 发表于 2025-3-22 01:49:46

Computational Excursions in Analysis and Number Theory

endocardium 发表于 2025-3-22 08:35:38

http://reply.papertrans.cn/24/2323/232281/232281_4.png

杀虫剂 发表于 2025-3-22 10:00:26

Die Stiftungsidee und ihre Umsetzung,y monic polynomial with integer coefficients. A real algebraic integer . is a . if all its conjugate roots have modulus strictly less than 1. A real algebraic integer . is a . if all its conjugate roots have modulus at most 1, and at least one (and hence (see E2) all but one) of the conjugate roots

反省 发表于 2025-3-22 14:01:01

https://doi.org/10.1007/978-3-8349-9310-6efficients— as is the case in <Emphasis FontCategory=“NonProportional”>F.</Emphasis>, <Emphasis FontCategory=“NonProportional”>L.</Emphasis>, and <Emphasis FontCategory=“NonProportional”>A.</Emphasis>. However, none of the results of this section are about polynomials with integer coefficients speci

反省 发表于 2025-3-22 19:17:46

Grundlagen des Stiftungsteuerrechts,rval. This is P1, and it is of a slightly different flavour than most of the other problems in this book, in that there is no restriction on the size of the coefficients. We now state P1 with greater precision.

编辑才信任 发表于 2025-3-22 21:26:34

https://doi.org/10.1007/978-3-8349-9310-6ct lists (repeats are allowed) of integers [..,…,..] and [....] such that.We will call this the Prouhet-Tarry-Escott Problem. We call . the size of the solution and . the degree. We abbreviate the above system by writing.

直觉好 发表于 2025-3-23 05:24:26

http://reply.papertrans.cn/24/2323/232281/232281_9.png

SSRIS 发表于 2025-3-23 09:19:51

http://reply.papertrans.cn/24/2323/232281/232281_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine