PRO 发表于 2025-3-23 13:08:14

http://reply.papertrans.cn/24/2323/232281/232281_11.png

名字 发表于 2025-3-23 17:03:02

,Die Förderstiftung als Organisation,s <Emphasis FontCategory=“NonProportional”>F</Emphasis> and . is a Pisot number, the ..is, quite surprisingly, discrete. Indeed, from El of Chapter 3, we have that for . a Pisot number and . ∈ <Emphasis FontCategory=“NonProportional”>Z</Emphasis> of height . with . not a root of p,.where the positiv

某人 发表于 2025-3-23 18:26:20

https://doi.org/10.1007/978-0-387-21652-2Diophantine approximation; Maxima; algorithms; calculus; combinatorics; computational number theory; extre

饮料 发表于 2025-3-24 00:06:31

978-1-4419-3000-2Springer Science+Business Media New York 2002

Contort 发表于 2025-3-24 05:52:37

Location of Zeros,efficients— as is the case in <Emphasis FontCategory=“NonProportional”>F.</Emphasis>, <Emphasis FontCategory=“NonProportional”>L.</Emphasis>, and <Emphasis FontCategory=“NonProportional”>A.</Emphasis>. However, none of the results of this section are about polynomials with integer coefficients specifically.

Relinquish 发表于 2025-3-24 07:17:11

http://reply.papertrans.cn/24/2323/232281/232281_16.png

变异 发表于 2025-3-24 12:06:47

http://reply.papertrans.cn/24/2323/232281/232281_17.png

相一致 发表于 2025-3-24 17:46:58

http://reply.papertrans.cn/24/2323/232281/232281_18.png

Halfhearted 发表于 2025-3-24 19:08:32

CMS Books in Mathematicshttp://image.papertrans.cn/c/image/232281.jpg

向前变椭圆 发表于 2025-3-24 23:19:53

https://doi.org/10.1007/978-3-8349-9310-6This book focuses on a variety of old problems in number theory and analysis. The problems concern polynomials with integer coefficients and typically ask something about the size of the polynomial with an appropriate measure of size and often with some restriction on the height and the degree.
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine