管玄乐团 发表于 2025-3-21 19:35:09
书目名称Complex Semisimple Quantum Groups and Representation Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0231534<br><br> <br><br>书目名称Complex Semisimple Quantum Groups and Representation Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0231534<br><br> <br><br>发出眩目光芒 发表于 2025-3-21 22:16:16
http://reply.papertrans.cn/24/2316/231534/231534_2.png鸽子 发表于 2025-3-22 02:04:10
http://reply.papertrans.cn/24/2316/231534/231534_3.pngPeculate 发表于 2025-3-22 07:47:49
http://reply.papertrans.cn/24/2316/231534/231534_4.pngcajole 发表于 2025-3-22 10:04:55
http://reply.papertrans.cn/24/2316/231534/231534_5.pngSolace 发表于 2025-3-22 15:37:41
http://reply.papertrans.cn/24/2316/231534/231534_6.pngSolace 发表于 2025-3-22 18:32:10
http://reply.papertrans.cn/24/2316/231534/231534_7.pngparoxysm 发表于 2025-3-22 23:55:08
Dirk Vallée,Barbara Engel,Walter Vogtr-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.万神殿 发表于 2025-3-23 02:46:18
http://reply.papertrans.cn/24/2316/231534/231534_9.pngcovert 发表于 2025-3-23 05:55:34
Category ,,r-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.