亚麻制品 发表于 2025-3-23 13:32:17
Representation Theory of Complex Semisimple Quantum Groups, of a Harish-Chandra module for .., which means an essential .-module with ..-types of finite multiplicity, see Sect. 6.2. In particular, the irreducible unitary representations of .. belong to this class.Mendicant 发表于 2025-3-23 13:55:01
http://reply.papertrans.cn/24/2316/231534/231534_12.pngcapsule 发表于 2025-3-23 21:58:33
http://reply.papertrans.cn/24/2316/231534/231534_13.pngInterdict 发表于 2025-3-23 22:44:52
Dirk Vallée,Barbara Engel,Walter Vogtr-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in theHERE 发表于 2025-3-24 06:22:42
http://reply.papertrans.cn/24/2316/231534/231534_15.png漂浮 发表于 2025-3-24 08:26:25
http://reply.papertrans.cn/24/2316/231534/231534_16.png不舒服 发表于 2025-3-24 11:27:44
Modellvorstellungen zur Prognoseg semisimple groups. In operator algebras, the theory of locally compact quantum groups (Kustermans and Vaes, Ann. Sci. École Norm. Sup. (4) 33(6):837–934, 2000) is a powerful framework which allows one to extend Pontrjagin duality to a fully noncommutative setting.绊住 发表于 2025-3-24 18:53:33
http://reply.papertrans.cn/24/2316/231534/231534_18.pngHyperlipidemia 发表于 2025-3-24 22:34:19
http://reply.papertrans.cn/24/2316/231534/231534_19.png带来墨水 发表于 2025-3-25 02:13:09
http://reply.papertrans.cn/24/2316/231534/231534_20.png