亚麻制品
发表于 2025-3-23 13:32:17
Representation Theory of Complex Semisimple Quantum Groups, of a Harish-Chandra module for .., which means an essential .-module with ..-types of finite multiplicity, see Sect. 6.2. In particular, the irreducible unitary representations of .. belong to this class.
Mendicant
发表于 2025-3-23 13:55:01
http://reply.papertrans.cn/24/2316/231534/231534_12.png
capsule
发表于 2025-3-23 21:58:33
http://reply.papertrans.cn/24/2316/231534/231534_13.png
Interdict
发表于 2025-3-23 22:44:52
Dirk Vallée,Barbara Engel,Walter Vogtr-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the
HERE
发表于 2025-3-24 06:22:42
http://reply.papertrans.cn/24/2316/231534/231534_15.png
漂浮
发表于 2025-3-24 08:26:25
http://reply.papertrans.cn/24/2316/231534/231534_16.png
不舒服
发表于 2025-3-24 11:27:44
Modellvorstellungen zur Prognoseg semisimple groups. In operator algebras, the theory of locally compact quantum groups (Kustermans and Vaes, Ann. Sci. École Norm. Sup. (4) 33(6):837–934, 2000) is a powerful framework which allows one to extend Pontrjagin duality to a fully noncommutative setting.
绊住
发表于 2025-3-24 18:53:33
http://reply.papertrans.cn/24/2316/231534/231534_18.png
Hyperlipidemia
发表于 2025-3-24 22:34:19
http://reply.papertrans.cn/24/2316/231534/231534_19.png
带来墨水
发表于 2025-3-25 02:13:09
http://reply.papertrans.cn/24/2316/231534/231534_20.png