Grant 发表于 2025-3-21 17:40:35

书目名称Classical and Quantum Dynamics影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0227162<br><br>        <br><br>书目名称Classical and Quantum Dynamics读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0227162<br><br>        <br><br>

OFF 发表于 2025-3-21 21:29:16

Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ϑ, then Jacobi’s principle states:

遗传 发表于 2025-3-22 00:29:35

http://reply.papertrans.cn/23/2272/227162/227162_3.png

擦掉 发表于 2025-3-22 06:30:27

The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.

自恋 发表于 2025-3-22 12:32:20

http://image.papertrans.cn/c/image/227162.jpg

荧光 发表于 2025-3-22 15:06:36

http://reply.papertrans.cn/23/2272/227162/227162_6.png

荧光 发表于 2025-3-22 18:57:48

A Classification-based Review RecommenderWe begin this chapter by deriving a few laws of nonconservation in mechanics. To this end we first consider the change of the action under rigid space translation δ. = δε. and δ.(.) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or

SEEK 发表于 2025-3-23 00:12:55

A kernel extension to handle missing dataWe already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (., .) to 2. constant values (., .), e.g., to the 2. initial values (., .) at time . = 0. Then the problem would be solved, . = .(., ., .), . = .(.,., .).

凌辱 发表于 2025-3-23 05:20:37

Max Bramer,Richard Ellis,Miltos PetridisWe shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity .. Let gravitation be neglected, and the collisions with the walls be elastic. If . denotes the average force onto each wall, then we have

Neuralgia 发表于 2025-3-23 06:54:59

http://reply.papertrans.cn/23/2272/227162/227162_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe