Heart-Rate 发表于 2025-3-25 03:30:46
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).一加就喷出 发表于 2025-3-25 11:12:06
http://reply.papertrans.cn/23/2272/227162/227162_22.pngSupplement 发表于 2025-3-25 13:25:24
http://reply.papertrans.cn/23/2272/227162/227162_23.pngcholeretic 发表于 2025-3-25 19:32:25
Direct Evaluation of Path Integrals,Until now we have always used a trick to calculate the path integral inBOGUS 发表于 2025-3-26 00:01:04
http://reply.papertrans.cn/23/2272/227162/227162_25.png记成蚂蚁 发表于 2025-3-26 02:43:27
http://reply.papertrans.cn/23/2272/227162/227162_26.pngInterdict 发表于 2025-3-26 05:57:17
http://reply.papertrans.cn/23/2272/227162/227162_27.pngAnonymous 发表于 2025-3-26 12:23:34
http://reply.papertrans.cn/23/2272/227162/227162_28.pngIge326 发表于 2025-3-26 14:42:29
http://reply.papertrans.cn/23/2272/227162/227162_29.png津贴 发表于 2025-3-26 19:26:34
PIPSS*: A System based on Temporal Estimates conservative, ∂./∂. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton-Jacobi equation to be separable for the unperturbed situation. The unperturbed problem .(.) which is described by the action-angle variables . and . will be as