Heart-Rate
发表于 2025-3-25 03:30:46
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
一加就喷出
发表于 2025-3-25 11:12:06
http://reply.papertrans.cn/23/2272/227162/227162_22.png
Supplement
发表于 2025-3-25 13:25:24
http://reply.papertrans.cn/23/2272/227162/227162_23.png
choleretic
发表于 2025-3-25 19:32:25
Direct Evaluation of Path Integrals,Until now we have always used a trick to calculate the path integral in
BOGUS
发表于 2025-3-26 00:01:04
http://reply.papertrans.cn/23/2272/227162/227162_25.png
记成蚂蚁
发表于 2025-3-26 02:43:27
http://reply.papertrans.cn/23/2272/227162/227162_26.png
Interdict
发表于 2025-3-26 05:57:17
http://reply.papertrans.cn/23/2272/227162/227162_27.png
Anonymous
发表于 2025-3-26 12:23:34
http://reply.papertrans.cn/23/2272/227162/227162_28.png
Ige326
发表于 2025-3-26 14:42:29
http://reply.papertrans.cn/23/2272/227162/227162_29.png
津贴
发表于 2025-3-26 19:26:34
PIPSS*: A System based on Temporal Estimates conservative, ∂./∂. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton-Jacobi equation to be separable for the unperturbed situation. The unperturbed problem .(.) which is described by the action-angle variables . and . will be as