Cyclone 发表于 2025-3-21 17:10:57
书目名称Chebyshev Splines and Kolmogorov Inequalities影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0224201<br><br> <br><br>书目名称Chebyshev Splines and Kolmogorov Inequalities读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0224201<br><br> <br><br>glomeruli 发表于 2025-3-21 22:20:53
https://doi.org/10.1007/978-3-0348-8808-0Topology; calculus; equation; function; optimization; theoremGNAW 发表于 2025-3-22 02:05:35
http://reply.papertrans.cn/23/2243/224201/224201_3.png笨重 发表于 2025-3-22 08:20:26
http://reply.papertrans.cn/23/2243/224201/224201_4.pngdemote 发表于 2025-3-22 11:09:55
http://reply.papertrans.cn/23/2243/224201/224201_5.pngTRACE 发表于 2025-3-22 15:44:42
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval , .. = ..(., ω, ., .). Then, referring to the results of our paper or , we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ℝ..TRACE 发表于 2025-3-22 19:38:50
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau in the case . = ℝ. and J. Hadamard in the case . = ℝ. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in .泛滥 发表于 2025-3-22 21:49:03
https://doi.org/10.1007/978-1-4302-0391-9points of alternance on the interval . Relying on the Rolle theorem or an application of Fredholm kernels, we give two proofs of extremality of Chebyshev perfect splines of the problem . for all 0 < . ≤ .. Then, we discuss the possibility of application of these two methods to the solution of吼叫 发表于 2025-3-23 03:23:36
http://reply.papertrans.cn/23/2243/224201/224201_9.pngshrill 发表于 2025-3-23 09:28:43
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval , .. = ..(., ω, ., .). Then, referring to the results of our paper or , we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t