lattice 发表于 2025-3-26 22:47:22

,Additive Kolmogorov—Landau Inequalities,In this chapter we first derive the numerical differentiation formulae of the form . Then we give sufficient conditions of extremality of a function . ∈ ... in the Kolmogorov-Landau inequalities.

半身雕像 发表于 2025-3-27 01:17:42

http://reply.papertrans.cn/23/2243/224201/224201_32.png

Malleable 发表于 2025-3-27 07:38:27

,Maximization of Integral Functionals in ,,[,,, ,,], - ∞ ≤ ,, < ,, ≤ +∞,We describe extremal functions and rearrangements of the problem.where .. < 0 < .., and the kernel ψ has a finite number or a countable mono-tonely ordered set of points of sign changes on [.., ..], - ∞ ≤ .. < .. ≤ +∞. In particular, we give the solution of the problem (**) in the case of the entire line [.., ..] = ℝ.

实现 发表于 2025-3-27 10:32:24

,Sharp Kolmogorov Inequalities in ,,,,(ℝ),Let ., .: 0 < m ≤ ., be integers. In this chapter we first describe the discrete family of Chebyshev ω-splines extremal in the problem .for certain choices of . and all concave modulii of continuity ω. Then, we characterize the extremal functions in the problem .for all . > 0 and α ∈ (0,1].

哺乳动物 发表于 2025-3-27 16:12:51

,Sharp Kolmogorov-Landau Inequalities in ,,,,(,), , = ℝ ⋁ ℝ+,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ℝ or ℝ.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).

ETCH 发表于 2025-3-27 18:29:11

http://reply.papertrans.cn/23/2243/224201/224201_36.png

Intact 发表于 2025-3-27 22:22:45

http://reply.papertrans.cn/23/2243/224201/224201_37.png

FECT 发表于 2025-3-28 05:46:30

http://reply.papertrans.cn/23/2243/224201/224201_38.png

详细目录 发表于 2025-3-28 07:53:45

http://reply.papertrans.cn/23/2243/224201/224201_39.png

nurture 发表于 2025-3-28 11:15:12

Positioning: Indented, Offset, and Aligned,of the kernel . satisfy equations (5.1.2), (5.1.10) for 0 < m < r, and (5.1.14) for m = r. We give a complete proof of Theorem 6.0.1 and then point out the only distinction between the proofs of Theorems 6.0.1 for 0 < . < . and . = ..
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkhäuser Verlag 1998 Topology.calculus.equation.function.o